CHAPTER 2

SOLUTION

(a) Parallelogram law:

(b) Triangle rule:

We measure:

$$
R=1391 \mathrm{kN}, \quad \alpha=47.8^{\circ}
$$

$$
\mathbf{R}=1391 \mathrm{~N}<^{\prime} 47.8^{\circ}
$$

SOLUTION

(a) Parallelogram law:

(b) Triangle rule:

We measure:

$$
R=906 \mathrm{lb}, \quad \alpha=26.6^{\circ}
$$

$$
R=906 \mathrm{lb} \measuredangle 26.6^{\circ}
$$

SOLUTION

(a) Parallelogram law:

(b) Triangle rule:

We measure:

$$
R=20.1 \mathrm{kN}, \quad \alpha=21.2^{\circ}
$$

$\mathbf{R}=20.1 \mathrm{kN}>21.2^{\circ}$

SOLUTION

(a) Parallelogram law:

(b) Triangle rule:

We measure:
$R=8.03 \mathrm{kips}, \quad \alpha=3.8^{\circ}$
$\mathbf{R}=8.03 \mathrm{kips} \quad 7.8^{\circ}$

SOLUTION

Using the triangle rule and the law of sines:
(a)

$$
\frac{120 \mathrm{~N}}{\sin 30^{\circ}}=\frac{P}{\sin 25^{\circ}}
$$

$$
P=101.4 \mathrm{~N}
$$

(b)

$$
\begin{array}{rlr}
30^{\circ}+\beta+25^{\circ} & =180^{\circ} \\
\beta & =180^{\circ}-25^{\circ}-30^{\circ} & \\
& =125^{\circ} & \\
\frac{120 \mathrm{~N}}{\sin 30^{\circ}} & =\frac{R}{\sin 125^{\circ}} & R=196.6 \mathrm{~N}
\end{array}
$$

PROBLEM 2.6

A telephone cable is clamped at A to the pole $A B$. Knowing that the tension in the left-hand portion of the cable is $T_{1}=800 \mathrm{lb}$, determine by trigonometry (a) the required tension T_{2} in the right-hand portion if the resultant \mathbf{R} of the forces exerted by the cable at A is to be vertical, (b) the corresponding magnitude of \mathbf{R}.

SOLUTION

Using the triangle rule and the law of sines:
(a)

$$
\begin{aligned}
75^{\circ}+40^{\circ}+\alpha & =180^{\circ} \\
\alpha & =180^{\circ}-75^{\circ}-40^{\circ} \\
& =65^{\circ}
\end{aligned}
$$

$$
\frac{800 \mathrm{lb}}{\sin 65^{\circ}}=\frac{T_{2}}{\sin 75^{\circ}}
$$

$$
T_{2}=853 \mathrm{lb}
$$

(b)

$$
\frac{800 \mathrm{lb}}{\sin 65^{\circ}}=\frac{R}{\sin 40^{\circ}} \quad R=567 \mathrm{lb}
$$

PROBLEM 2.7

A telephone cable is clamped at A to the pole $A B$. Knowing that the tension in the right-hand portion of the cable is $T_{2}=1000 \mathrm{lb}$, determine by trigonometry (a) the required tension T_{1} in the left-hand portion if the resultant \mathbf{R} of the forces exerted by the cable at A is to be vertical, (b) the corresponding magnitude of \mathbf{R}.

SOLUTION

Using the triangle rule and the law of sines:
(a)
(b)

$$
\begin{aligned}
75^{\circ}+40^{\circ}+\beta & =180^{\circ} \\
\beta=180^{\circ}-75^{\circ}-40^{\circ} & \\
& =65^{\circ} \\
\frac{1000 \mathrm{lb}}{\sin 75^{\circ}}=\frac{T_{1}}{\sin 65^{\circ}} & T_{1}=938 \mathrm{lb} \\
\frac{1000 \mathrm{lb}}{\sin 75^{\circ}}=\frac{R}{\sin 40^{\circ}} & R=665 \mathrm{lb}
\end{aligned}
$$

PROBLEM 2.8

A disabled automobile is pulled by means of two ropes as shown. The tension in rope $A B$ is 2.2 kN , and the angle α is 25°. Knowing that the resultant of the two forces applied at A is directed along the axis of the automobile, determine by trigonometry (a) the tension in rope $A C$, (b) the magnitude of the resultant of the two forces applied at A.

SOLUTION

Using the law of sines:

$$
\begin{aligned}
\frac{T_{A C}}{\sin 30^{\circ}} & =\frac{R}{\sin 125^{\circ}}=\frac{2.2 \mathrm{kN}}{\sin 25^{\circ}} \\
T_{A C} & =2.603 \mathrm{kN} \\
R & =4.264 \mathrm{kN}
\end{aligned}
$$

(a)
$T_{A C}=2.60 \mathrm{kN}$
(b)

$$
R=4.26 \mathrm{kN}
$$

Using the law of cosines:

$$
\begin{aligned}
T_{A C}^{2} & =(3 \mathrm{kN})^{2}+(4.8 \mathrm{kN})^{2}-2(3 \mathrm{kN})(4.8 \mathrm{kN}) \cos 30^{\circ} \\
T_{A C} & =2.6643 \mathrm{kN}
\end{aligned}
$$

Using the law of sines: $\quad \frac{\sin \alpha}{3 \mathrm{kN}}=\frac{\sin 30^{\circ}}{2.6643 \mathrm{kN}}$
$\alpha=34.3^{\circ}$

$$
\mathbf{T}_{A C}=2.66 \mathrm{kN} \nabla 34.3^{\circ}
$$

SOLUTION

Using the triangle rule and law of sines:
(a)

$$
\begin{aligned}
\frac{\sin \alpha}{50 \mathrm{~N}} & =\frac{\sin 25^{\circ}}{35 \mathrm{~N}} \\
\sin \alpha & =0.60374 \\
\alpha & =37.138^{\circ}
\end{aligned}
$$

(b)

$$
\begin{array}{rlr}
\alpha+\beta+25^{\circ} & =180^{\circ} \\
\beta & =180^{\circ}-25^{\circ}-37.138^{\circ} \\
& =117.862^{\circ} \\
\frac{R}{\sin 117.862^{\circ}} & =\frac{35 \mathrm{~N}}{\sin 25^{\circ}} \quad R=73.2 \mathrm{~N}
\end{array}
$$

SOLUTION

Using the triangle rule and the law of sines:
(a)

$$
\begin{aligned}
\beta+50^{\circ}+60^{\circ} & =180^{\circ} \\
\beta & =180^{\circ}-50^{\circ}-60^{\circ} \\
& =70^{\circ}
\end{aligned}
$$

$$
\frac{425 \mathrm{lb}}{\sin 70^{\circ}}=\frac{P}{\sin 60^{\circ}}
$$

$$
P=392 \mathrm{lb}
$$

$$
\frac{425 \mathrm{lb}}{\sin 70^{\circ}}=\frac{R}{\sin 50^{\circ}}
$$

$$
R=346 \mathrm{lb}
$$

PROBLEM 2.12

A steel tank is to be positioned in an excavation. Knowing that the magnitude of \mathbf{P} is 500 lb , determine by trigonometry (a) the required angle α if the resultant \mathbf{R} of the two forces applied at A is to be vertical, (b) the corresponding magnitude of \mathbf{R}.

SOLUTION

Using the triangle rule and the law of sines:
(a)

$$
\begin{aligned}
\left(\alpha+30^{\circ}\right)+60^{\circ}+\beta & =180^{\circ} \\
\beta & =180^{\circ}-\left(\alpha+30^{\circ}\right)-60^{\circ} \\
\beta & =90^{\circ}-\alpha \\
\frac{\sin \left(90^{\circ}-\alpha\right)}{425 \mathrm{lb}} & =\frac{\sin 60^{\circ}}{500 \mathrm{lb}}
\end{aligned}
$$

$$
90^{\circ}-\alpha=47.402^{\circ}
$$

$$
\alpha=42.6^{\circ}
$$

(b)

$$
\frac{R}{\sin \left(42.598^{\circ}+30^{\circ}\right)}=\frac{500 \mathrm{lb}}{\sin 60^{\circ}}
$$

$$
R=551 \mathrm{lb}
$$

PROBLEM 2.13

A steel tank is to be positioned in an excavation. Determine by trigonometry (a) the magnitude and direction of the smallest force \mathbf{P} for which the resultant \mathbf{R} of the two forces applied at A is vertical, (b) the corresponding magnitude of \mathbf{R}.

SOLUTION

The smallest force P will be perpendicular to R.
(a) $P=(425 \mathrm{lb}) \cos 30^{\circ}$
(b) $R=(425 \mathrm{lb}) \sin 30^{\circ}$

$$
\begin{array}{r}
\mathbf{P}=368 \mathrm{lb} \longrightarrow \\
R=213 \mathrm{lb}
\end{array}
$$

SOLUTION

The smallest force P will be perpendicular to R.
(a)
$P=(50 \mathrm{~N}) \sin 25^{\circ}$
(b)
$R=(50 \mathrm{~N}) \cos 25^{\circ}$

$$
\begin{gathered}
\mathbf{P}=21.1 \mathrm{~N} \downarrow \\
R=45.3 \mathrm{~N}
\end{gathered}
$$

SOLUTION

Using the law of cosines:

$$
\begin{aligned}
R^{2}= & (200 \mathrm{lb})^{2}+(300 \mathrm{lb})^{2} \\
& -2(200 \mathrm{lb})(300 \mathrm{lb}) \cos \left(45^{\circ}+65^{\circ}\right) \\
R= & 413.57 \mathrm{lb}
\end{aligned}
$$

Using the law of sines:

$$
\begin{gathered}
\frac{\sin \alpha}{300 \mathrm{lb}}=\frac{\sin \left(45^{\circ}+65^{\circ}\right)}{413.57 \mathrm{lb}} \\
\alpha=42.972^{\circ} \\
\beta=90^{\circ}+25^{\circ}-42.972^{\circ} \quad \mathbf{R}=414 \mathrm{lb} \text { ■ } 72.0^{\circ}
\end{gathered}
$$

PROBLEM 2.16

Solve Prob. 2.1 by trigonometry.

PROBLEM 2.1

Two forces are applied as shown to a hook. Determine graphically the magnitude and direction of their resultant using (a) the parallelogram law, (b) the triangle rule.

SOLUTION

Using the law of cosines:

$$
\begin{aligned}
R^{2}= & (900 \mathrm{~N})^{2}+(600 \mathrm{~N})^{2} \\
& -2(900 \mathrm{~N})(600 \mathrm{~N}) \cos \left(135^{\circ}\right) \\
R= & 1390.57 \mathrm{~N}
\end{aligned}
$$

Using the law of sines:

$$
\begin{aligned}
\frac{\sin \left(\alpha-30^{\circ}\right)}{600 \mathrm{~N}} & =\frac{\sin \left(135^{\circ}\right)}{1390.57 \mathrm{~N}} \\
\alpha-30^{\circ} & =17.7642^{\circ} \\
\alpha & =47.764^{\circ}
\end{aligned}
$$

$$
\mathbf{R}=1391 \mathrm{~N}, ~ 47.8^{\circ}
$$

SOLUTION

Using the force triangle and the laws of cosines and sines:
We have:

$$
\begin{aligned}
\gamma & =180^{\circ}-\left(50^{\circ}+25^{\circ}\right) \\
& =105^{\circ}
\end{aligned}
$$

Then

$$
\begin{aligned}
R^{2} & =(4 \mathrm{kips})^{2}+(6 \mathrm{kips})^{2}-2(4 \mathrm{kips})(6 \mathrm{kips}) \cos 105^{\circ} \\
& =64.423 \mathrm{kips}^{2} \\
R & =8.0264 \mathrm{kips}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{4 \mathrm{kips}}{\sin \left(25^{\circ}+\alpha\right)} & =\frac{8.0264 \mathrm{kips}}{\sin 105^{\circ}} \\
\sin \left(25^{\circ}+\alpha\right) & =0.48137 \\
25^{\circ}+\alpha & =28.775^{\circ} \\
\alpha & =3.775^{\circ}
\end{aligned}
$$

$$
\mathbf{R}=8.03 \mathrm{kips} \bar{y} 3.8^{\circ}
$$

PROBLEM 2.18

For the stake of Prob. 2.5, knowing that the tension in one rope is 120 N , determine by trigonometry the magnitude and direction of the force \mathbf{P} so that the resultant is a vertical force of 160 N .

PROBLEM 2.5 A stake is being pulled out of the ground by means of two ropes as shown. Knowing that $\alpha=30^{\circ}$, determine by trigonometry (a) the magnitude of the force \mathbf{P} so that the resultant force exerted on the stake is vertical, (b) the corresponding magnitude of the resultant.

SOLUTION

Using the laws of cosines and sines:

$$
P^{2}=(120 \mathrm{~N})^{2}+(160 \mathrm{~N})^{2}-2(120 \mathrm{~N})(160 \mathrm{~N}) \cos 25^{\circ}
$$

$$
\begin{aligned}
& \qquad P=72.096 \mathrm{~N} \\
& \qquad \begin{aligned}
& \sin \alpha \\
& 120 \mathrm{~N}=\frac{\sin 25^{\circ}}{72.096 \mathrm{~N}} \\
& \sin \alpha=0.70343 \\
& \alpha=44.703^{\circ}
\end{aligned}
\end{aligned}
$$

$$
\mathbf{P}=72.1 \mathrm{~N} b 44.7^{\circ}
$$

SOLUTION

Using the force triangle and the laws of cosines and sines:
We have

$$
\begin{aligned}
\gamma & =180^{\circ}-\left(20^{\circ}+10^{\circ}\right) \\
& =150^{\circ}
\end{aligned}
$$

Then

$$
R^{2}=(48 \mathrm{~N})^{2}+(60 \mathrm{~N})^{2}
$$

$$
-2(48 \mathrm{~N})(60 \mathrm{~N}) \cos 150^{\circ}
$$

$$
R=104.366 \mathrm{~N}
$$

and

$$
\frac{48 \mathrm{~N}}{\sin \alpha}=\frac{104.366 \mathrm{~N}}{\sin 150^{\circ}}
$$

$$
\sin \alpha=0.22996
$$

$$
\alpha=13.2947^{\circ}
$$

Hence:

$$
\begin{aligned}
\phi & =180^{\circ}-\alpha-80^{\circ} \\
& =180^{\circ}-13.2947^{\circ}-80^{\circ} \\
& =86.705^{\circ}
\end{aligned}
$$

$$
\mathbf{R}=104.4 \mathrm{~N} \searrow 86.7^{\circ}
$$

SOLUTION

Using the force triangle and the laws of cosines and sines:
We have

$$
\begin{aligned}
\gamma & =180^{\circ}-\left(20^{\circ}+10^{\circ}\right) \\
& =150^{\circ}
\end{aligned}
$$

Then

$$
R^{2}=(60 \mathrm{~N})^{2}+(48 \mathrm{~N})^{2}
$$

$$
-2(60 \mathrm{~N})(48 \mathrm{~N}) \cos 150^{\circ}
$$

$$
R=104.366 \mathrm{~N}
$$

and

$$
\frac{60 \mathrm{~N}}{\sin \alpha}=\frac{104.366 \mathrm{~N}}{\sin 150^{\circ}}
$$

$$
\sin \alpha=0.28745
$$

$$
\alpha=16.7054^{\circ}
$$

Hence:

$$
\begin{aligned}
\phi & =180^{\circ}-\alpha-180^{\circ} \\
& =180^{\circ}-16.7054^{\circ}-80^{\circ} \\
& =83.295^{\circ}
\end{aligned}
$$

$$
\mathbf{R}=104.4 \mathrm{~N} \triangle 83.3^{\circ}
$$

PROBLEM 2.21

Determine the x and y components of each of the forces shown.

SOLUTION

Compute the following distances:

29-lb Force:

$$
\begin{aligned}
O A & =\sqrt{(84)^{2}+(80)^{2}} \\
& =116 \mathrm{in} . \\
O B & =\sqrt{(28)^{2}+(96)^{2}} \\
& =100 \mathrm{in} . \\
O C & =\sqrt{(48)^{2}+(90)^{2}} \\
& =102 \mathrm{in} .
\end{aligned}
$$

$$
\begin{aligned}
& F_{x}=+(29 \mathrm{lb}) \frac{84}{116} \\
& F_{y}=+(29 \mathrm{lb}) \frac{80}{116}
\end{aligned}
$$

$F_{x}=+21.0 \mathrm{lb}$
$F_{y}=+20.0 \mathrm{lb}$
$F_{x}=-14.00 \mathrm{lb}$
$F_{y}=+48.0 \mathrm{lb}$
$F_{y}=+(50 \mathrm{lb}) \frac{96}{100}$
$F_{x}=+(51 \mathrm{lb}) \frac{48}{102}$
$F_{y}=-(51 \mathrm{lb}) \frac{90}{102}$
$F_{x}=+24.0 \mathrm{lb}$
$F_{y}=-45.0 \mathrm{lb}$

SOLUTION

Compute the following distances:

$$
\begin{aligned}
O A & =\sqrt{(600)^{2}+(800)^{2}} \\
& =1000 \mathrm{~mm} \\
O B & =\sqrt{(560)^{2}+(900)^{2}} \\
& =1060 \mathrm{~mm} \\
O C & =\sqrt{(480)^{2}+(900)^{2}} \\
& =1020 \mathrm{~mm}
\end{aligned}
$$

800-N Force:

$$
\begin{aligned}
& F_{x}=+(800 \mathrm{~N}) \frac{800}{1000} \\
& F_{y}=+(800 \mathrm{~N}) \frac{600}{1000}
\end{aligned}
$$

$$
F_{x}=+640 \mathrm{~N}
$$

$$
F_{y}=+480 \mathrm{~N}
$$

424-N Force:

$$
F_{x}=-(424 \mathrm{~N}) \frac{560}{1060}
$$

$$
F_{x}=-224 \mathrm{~N}
$$

$$
F_{y}=-(424 \mathrm{~N}) \frac{900}{1060}
$$

$$
F_{y}=-360 \mathrm{~N}
$$

408-N Force:

$$
\begin{aligned}
& F_{x}=+(408 \mathrm{~N}) \frac{480}{1020} \\
& F_{y}=-(408 \mathrm{~N}) \frac{900}{1020}
\end{aligned}
$$

$$
F_{x}=+192.0 \mathrm{~N}
$$

$$
F_{y}=-360 \mathrm{~N}
$$

SOLUTION

80-N Force
$F_{x}=+(80 \mathrm{~N}) \cos 40^{\circ}$
$F_{x}=61.3 \mathrm{~N}$
$F_{y}=+(80 \mathrm{~N}) \sin 40^{\circ}$
$F_{y}=51.4 \mathrm{~N}$
120-N Force:
$F_{x}=+(120 \mathrm{~N}) \cos 70^{\circ}$
$F_{x}=41.0 \mathrm{~N}$
$F_{y}=+(120 \mathrm{~N}) \sin 70^{\circ}$
$F_{y}=112.8 \mathrm{~N}$
150-N Force:

$$
\begin{aligned}
& F_{x}=-(150 \mathrm{~N}) \cos 35^{\circ} \\
& F_{y}=+(150 \mathrm{~N}) \sin 35^{\circ}
\end{aligned}
$$

$$
\begin{array}{r}
F_{x}=-122.9 \mathrm{~N} \\
F_{y}=86.0 \mathrm{~N}
\end{array}
$$

SOLUTION

40-lb Force:	$F_{x}=+(40 \mathrm{lb}) \cos 60^{\circ}$	$F_{x}=20.0 \mathrm{lb}$
	$F_{y}=-(40 \mathrm{lb}) \sin 60^{\circ}$	$F_{y}=-34.6 \mathrm{lb}$
$50-\mathrm{lb}$ Force:	$F_{x}=-(50 \mathrm{lb}) \sin 50^{\circ}$	$F_{x}=-38.3 \mathrm{lb}$
60-lb Force:	$F_{y}=-(50 \mathrm{lb}) \cos 50^{\circ}$	$F_{y}=-32.1 \mathrm{lb}$
	$F_{x}=+(60 \mathrm{lb}) \cos 25^{\circ}$	$F_{x}=54.4 \mathrm{lb}$
	$F_{y}=+(60 \mathrm{lb}) \sin 25^{\circ}$	$F_{y}=25.4 \mathrm{lb}$

PROBLEM 2.25

Member $B C$ exerts on member $A C$ a force \mathbf{P} directed along line $B C$. Knowing that \mathbf{P} must have a $325-\mathrm{N}$ horizontal component, determine (a) the magnitude of the force $\mathbf{P},(b)$ its vertical component.

SOLUTION

$$
\begin{aligned}
B C & =\sqrt{(650 \mathrm{~mm})^{2}+(720 \mathrm{~mm})^{2}} \\
& =970 \mathrm{~mm}
\end{aligned}
$$

(a)

$$
P_{x}=P\left(\frac{650}{970}\right)
$$

or

$$
\begin{aligned}
P & =P_{x}\left(\frac{970}{650}\right) \\
& =325 \mathrm{~N}\left(\frac{970}{650}\right) \\
& =485 \mathrm{~N}
\end{aligned}
$$

$$
P=485 \mathrm{~N}
$$

(b)

$$
\begin{aligned}
P_{y} & =P\left(\frac{720}{970}\right) \\
& =485 \mathrm{~N}\left(\frac{720}{970}\right) \\
& =360 \mathrm{~N}
\end{aligned}
$$

SOLUTION

(a)
$P \sin 35^{\circ}=300 \mathrm{lb}$

$$
P=\frac{300 \mathrm{lb}}{\sin 35^{\circ}}
$$

$$
P=523 \mathrm{lb}
$$

(b) Vertical component

$$
\begin{array}{rlr}
P_{v} & =P \cos 35^{\circ} \\
& =(523 \mathrm{lb}) \cos 35^{\circ} & P_{v}=428 \mathrm{lb}
\end{array}
$$

PROBLEM 2.27

The hydraulic cylinder $B C$ exerts on member $A B$ a force \mathbf{P} directed along line $B C$. Knowing that \mathbf{P} must have a $600-\mathrm{N}$ component perpendicular to member $A B$, determine (a) the magnitude of the force $\mathbf{P},(b)$ its component along line $A B$.

SOLUTION

(a)

$$
\begin{aligned}
180^{\circ} & =45^{\circ}+\alpha+90^{\circ}+30^{\circ} \\
\alpha & =180^{\circ}-45^{\circ}-90^{\circ}-30^{\circ} \\
& =15^{\circ} \\
\cos \alpha & =\frac{P_{x}}{P} \\
P & =\frac{P_{x}}{\cos \alpha} \\
& =\frac{600 \mathrm{~N}}{\cos 15^{\circ}} \\
& =621.17 \mathrm{~N} \quad A \quad P=621 \mathrm{~N}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\tan \alpha & =\frac{P_{y}}{P_{x}} \\
P_{y} & =P_{x} \tan \alpha \\
& =(600 \mathrm{~N}) \tan 15^{\circ} \\
& =160.770 \mathrm{~N}
\end{aligned}
$$

$$
P_{y}=160.8 \mathrm{~N}
$$

SOLUTION

(a)
(b)

(a)

$$
\begin{array}{rlr}
P & =\frac{P_{y}}{\cos 55^{\circ}} & \\
& =\frac{350 \mathrm{lb}}{\cos 55^{\circ}} & \\
& =610.21 \mathrm{lb} & P=610 \mathrm{lb} \\
P_{x} & =P \sin 55^{\circ} & \\
& =(610.21 \mathrm{lb}) \sin 55^{\circ} & \\
& =499.85 \mathrm{lb} & P_{x}=500 \mathrm{lb}
\end{array}
$$

PROBLEM 2.29

The hydraulic cylinder $B D$ exerts on member $A B C$ a force \mathbf{P} directed along line $B D$. Knowing that \mathbf{P} must have a $750-\mathrm{N}$ component perpendicular to member $A B C$, determine (a) the magnitude of the force $\mathbf{P},(b)$ its component parallel to $A B C$.

SOLUTION

(a)
(b)

$$
\begin{array}{rlr}
750 \mathrm{~N} & =P \sin 20^{\circ} & \\
P & =2192.9 \mathrm{~N} & P=2190 \mathrm{~N} \\
P_{A B C} & =P \cos 20^{\circ} & \\
& =(2192.9 \mathrm{~N}) \cos 20^{\circ} & P_{A B C}=2060 \mathrm{~N}
\end{array}
$$

PROBLEM 2.30

The guy wire $B D$ exerts on the telephone pole $A C$ a force \mathbf{P} directed along $B D$. Knowing that \mathbf{P} must have a $720-\mathrm{N}$ component perpendicular to the pole $A C$, determine (a) the magnitude of the force $\mathbf{P},(b)$ its component along line $A C$.

SOLUTION

(a)

$$
\begin{aligned}
P & =\frac{37}{12} P_{x} \\
& =\frac{37}{12}(720 \mathrm{~N}) \\
& =2220 \mathrm{~N}
\end{aligned}
$$

$$
P=2.22 \mathrm{kN}
$$

(b)

$$
\begin{aligned}
P_{y} & =\frac{35}{12} P_{x} \\
& =\frac{35}{12}(720 \mathrm{~N}) \\
& =2100 \mathrm{~N}
\end{aligned}
$$

$$
P_{y}=2.10 \mathrm{kN}
$$

SOLUTION

Components of the forces were determined in Problem 2.21:

Force	x Comp. (lb)	y Comp. (lb)
29 lb	+21.0	+20.0
50 lb	-14.00	+48.0
51 lb	+24.0	-45.0
	$R_{x}=+31.0$	$R_{y}=+23.0$

$$
\begin{array}{rlrl}
\mathbf{R} & =R_{x} \mathbf{i}+R_{y} \mathbf{j} \\
& =(31.0 \mathrm{lb}) \mathbf{i}+(23.0 \mathrm{lb}) \mathbf{j} & R_{y}= & 23.0 \overrightarrow{\mathbf{j}} \\
\tan \alpha & =\frac{R_{y}}{R_{x}} & \\
& =\frac{23.0}{31.0} \\
\alpha & =36.573^{\circ} \\
R & =\frac{23.0 \mathrm{lb}}{\sin \left(36.573^{\circ}\right)} \\
& =38.601 \mathrm{lb} & & \\
R_{x}=31.0 \vec{i} \\
\hline
\end{array}
$$

SOLUTION

Components of the forces were determined in Problem 2.23:

Force	x Comp. (N)	y Comp. (N)
80 N	+61.3	+51.4
120 N	+41.0	+112.8
150 N	-122.9	+86.0

$$
\begin{array}{rlrl}
\mathbf{R} & =R_{x} \mathbf{i}+R_{y} \mathbf{j} & \\
& =(-20.6 \mathrm{~N}) \mathbf{i}+(250.2 \mathrm{~N}) \mathbf{j} & R \\
\tan \alpha & =\frac{R_{y}}{R_{x}} & & \underline{R}_{y}=250.2 \underline{j} \\
\tan \alpha & =\frac{250.2 \mathrm{~N}}{20.6 \mathrm{~N}} & & R_{x}=-20.6 \underline{c}^{\prime} \\
\tan \alpha & =12.1456 \\
\alpha & =85.293^{\circ} & & \mathbf{R}=251 \mathrm{~N} \quad 85.3^{\circ} .
\end{array}
$$

PROBLEM 2.33

Determine the resultant of the three forces of Problem 2.24.
PROBLEM 2.24 Determine the x and y components of each of the forces shown.

SOLUTION

Force	x Comp. (lb)	y Comp. (b)
40 lb	+20.00	-34.64
50 lb	-38.30	-32.14
60 lb	+54.38	+25.36
	$R_{x}=+36.08$	$R_{y}=-41.42$

$$
\begin{aligned}
\mathbf{R} & =R_{x} \mathbf{i}+R_{y} \mathbf{j} \\
& =(+36.08 \mathrm{lb}) \mathbf{i}+(-41.42 \mathrm{lb}) \mathbf{j} \\
\tan \alpha & =\frac{R_{y}}{R_{x}} \\
\tan \alpha & =\frac{41.42 \mathrm{lb}}{36.08 \mathrm{lb}} \\
\tan \alpha & =1.14800 \\
\alpha & =48.942^{\circ} \\
R & =\frac{41.42 \mathrm{lb}}{\sin 48.942^{\circ}}
\end{aligned}
$$

$$
\mathbf{R}=54.9 \mathrm{lb}\left\ulcorner 48.9^{\circ}\right.
$$

SOLUTION

Components of the forces were determined in Problem 2.22:

Force	x Comp. (N)	y Comp. (N)
800 lb	+640	+480
424 lb	-224	-360
408 lb	+192	-360

$$
\begin{array}{rlrl}
\mathbf{R} & =R_{x} \mathbf{i}+R_{y} \mathbf{j} \\
& =(608 \mathrm{lb}) \mathbf{i}+(-240 \mathrm{lb}) \mathbf{j} & \\
\tan \alpha & =\frac{R_{y}}{R_{x}} & & \\
& =\frac{240}{608} & R_{x}=608 \underline{i} \\
\alpha & =21.541^{\circ} \\
R & =\frac{240 \mathrm{~N}}{\sin \left(21.541^{\circ}\right)} & \underline{R_{y}}=-240 j \\
& =653.65 \mathrm{~N} & & \\
\mathbf{R}=654 \mathrm{~N} \div 21.5^{\circ}
\end{array}
$$

SOLUTION

100-N Force:
$F_{x}=+(100 \mathrm{~N}) \cos 35^{\circ}=+81.915 \mathrm{~N}$
$F_{y}=-(100 \mathrm{~N}) \sin 35^{\circ}=-57.358 \mathrm{~N}$
150-N Force:
$F_{x}=+(150 \mathrm{~N}) \cos 65^{\circ}=+63.393 \mathrm{~N}$
$F_{y}=-(150 \mathrm{~N}) \sin 65^{\circ}=-135.946 \mathrm{~N}$

200-N Force:
$F_{x}=-(200 \mathrm{~N}) \cos 35^{\circ}=-163.830 \mathrm{~N}$
$F_{y}=-(200 \mathrm{~N}) \sin 35^{\circ}=-114.715 \mathrm{~N}$

Force	x Comp. (N)	y Comp. (N)
100 N	+81.915	-57.358
150 N	+63.393	-135.946
200 N	-163.830	-114.715
	$R_{x}=-18.522$	$R_{y}=-308.02$

$$
\begin{array}{rlr}
\mathbf{R} & =R_{x} \mathbf{i}+R_{y} \mathbf{j} \\
& =(-18.522 \mathrm{~N}) \mathbf{i}+(-308.02 \mathrm{~N}) \mathbf{j} \\
\tan \alpha & =\frac{R_{y}}{R_{x}} \\
& =\frac{308.02}{18.522} \\
\alpha & =86.559^{\circ} \\
R & =\frac{308.02 \mathrm{~N}}{\sin 86.559} \quad \mathbf{R}=309 \mathrm{~N} \square 86.6^{\circ}
\end{array}
$$

PROBLEM 2.36

Knowing that the tension in rope $A C$ is 365 N , determine the resultant of the three forces exerted at point C of post $B C$.

SOLUTION

Determine force components:
Cable force $A C: \quad F_{x}=-(365 \mathrm{~N}) \frac{960}{1460}=-240 \mathrm{~N}$

$$
F_{y}=-(365 \mathrm{~N}) \frac{1100}{1460}=-275 \mathrm{~N}
$$

500-N Force: $\quad F_{x}=(500 \mathrm{~N}) \frac{24}{25}=480 \mathrm{~N}$

$$
F_{y}=(500 \mathrm{~N}) \frac{7}{25}=140 \mathrm{~N}
$$

200-N Force: $\quad F_{x}=(200 \mathrm{~N}) \frac{4}{5}=160 \mathrm{~N}$

$$
F_{y}=-(200 \mathrm{~N}) \frac{3}{5}=-120 \mathrm{~N}
$$

and

$$
\begin{aligned}
R_{x} & =\Sigma F_{x}=-240 \mathrm{~N}+480 \mathrm{~N}+160 \mathrm{~N}=400 \mathrm{~N} \\
R_{y} & =\Sigma F_{y}=-275 \mathrm{~N}+140 \mathrm{~N}-120 \mathrm{~N}=-255 \mathrm{~N} \\
R & =\sqrt{R_{x}^{2}+R_{y}^{2}} \\
& =\sqrt{(400 \mathrm{~N})^{2}+(-255 \mathrm{~N})^{2}} \\
& =474.37 \mathrm{~N}
\end{aligned}
$$

Further: $\quad \tan \alpha=\frac{255}{400}$

$$
\alpha=32.5^{\circ}
$$

$$
\mathbf{R}=474 \mathrm{~N} \subset 32.5^{\circ}
$$

SOLUTION

60-lb Force:
$F_{x}=(60 \mathrm{lb}) \cos 20^{\circ}=56.382 \mathrm{lb}$
$F_{y}=(60 \mathrm{lb}) \sin 20^{\circ}=20.521 \mathrm{lb}$

80-lb Force: $\quad F_{x}=(80 \mathrm{lb}) \cos 60^{\circ}=40.000 \mathrm{lb}$ $F_{y}=(80 \mathrm{lb}) \sin 60^{\circ}=69.282 \mathrm{lb}$

120-lb Force:

$$
\begin{aligned}
& F_{x}=(120 \mathrm{lb}) \cos 30^{\circ}=103.923 \mathrm{lb} \\
& F_{y}=-(120 \mathrm{lb}) \sin 30^{\circ}=-60.000 \mathrm{lb}
\end{aligned}
$$

and

$$
\begin{aligned}
R_{x} & =\Sigma F_{x}=200.305 \mathrm{lb} \\
R_{y} & =\Sigma F_{y}=29.803 \mathrm{lb} \\
R & =\sqrt{(200.305 \mathrm{lb})^{2}+(29.803 \mathrm{lb})^{2}} \\
& =202.510 \mathrm{lb}
\end{aligned}
$$

Further: $\quad \tan \alpha=\frac{29.803}{200.305}$

$$
\begin{array}{rlr}
\alpha & =\tan ^{-1} \frac{29.803}{200.305} \\
& =8.46^{\circ} \quad \mathbf{R}=203 \mathrm{lb}<8.46^{\circ}
\end{array}
$$

SOLUTION

PROBLEM 2.39

For the collar of Problem 2.35, determine (a) the required value of α if the resultant of the three forces shown is to be vertical, (b) the corresponding magnitude of the resultant.

SOLUTION

$$
\begin{align*}
R_{x} & =\Sigma F_{x} \\
& =(100 \mathrm{~N}) \cos \alpha+(150 \mathrm{~N}) \cos \left(\alpha+30^{\circ}\right)-(200 \mathrm{~N}) \cos \alpha \\
R_{x} & =-(100 \mathrm{~N}) \cos \alpha+(150 \mathrm{~N}) \cos \left(\alpha+30^{\circ}\right) \tag{1}\\
R_{y} & =\Sigma F_{y} \\
& =-(100 \mathrm{~N}) \sin \alpha-(150 \mathrm{~N}) \sin \left(\alpha+30^{\circ}\right)-(200 \mathrm{~N}) \sin \alpha \\
R_{y} & =-(300 \mathrm{~N}) \sin \alpha-(150 \mathrm{~N}) \sin \left(\alpha+30^{\circ}\right) \tag{2}
\end{align*}
$$

(a) For \mathbf{R} to be vertical, we must have $R_{x}=0$. We make $R_{x}=0$ in Eq. (1):

$$
\begin{aligned}
-100 \cos \alpha+150 \cos \left(\alpha+30^{\circ}\right) & =0 \\
-100 \cos \alpha+150\left(\cos \alpha \cos 30^{\circ}-\sin \alpha \sin 30^{\circ}\right) & =0 \\
29.904 \cos \alpha & =75 \sin \alpha \\
\tan \alpha & =\frac{29.904}{75} \\
& =0.39872 \\
\alpha & =21.738^{\circ}
\end{aligned}
$$

(b) Substituting for α in Eq. (2):

$$
\begin{aligned}
R_{y} & =-300 \sin 21.738^{\circ}-150 \sin 51.738^{\circ} \\
& =-228.89 \mathrm{~N}
\end{aligned}
$$

$$
R=\left|R_{y}\right|=228.89 \mathrm{~N} \quad R=229 \mathrm{~N}
$$

PROBLEM 2.40

For the post of Prob. 2.36, determine (a) the required tension in rope $A C$ if the resultant of the three forces exerted at point C is to be horizontal, (b) the corresponding magnitude of the resultant.

SOLUTION

$$
\begin{align*}
& R_{x}=\Sigma F_{x}=-\frac{960}{1460} T_{A C}+\frac{24}{25}(500 \mathrm{~N})+\frac{4}{5}(200 \mathrm{~N}) \\
& R_{x}=-\frac{48}{73} T_{A C}+640 \mathrm{~N} \tag{1}\\
& R_{y}=\Sigma F_{y}=-\frac{1100}{1460} T_{A C}+\frac{7}{25}(500 \mathrm{~N})-\frac{3}{5}(200 \mathrm{~N}) \\
& R_{y}=-\frac{55}{73} T_{A C}+20 \mathrm{~N} \tag{2}
\end{align*}
$$

(a) For \mathbf{R} to be horizontal, we must have $R_{y}=0$.

Set $R_{y}=0$ in Eq. (2):

$$
\begin{array}{rlr}
-\frac{55}{73} T_{A C}+20 \mathrm{~N} & =0 \\
T_{A C} & =26.545 \mathrm{~N} & T_{A C}=26.5 \mathrm{~N}
\end{array}
$$

(b) Substituting for $T_{A C}$ into Eq. (1) gives

$$
\begin{aligned}
& R_{x}=-\frac{48}{73}(26.545 \mathrm{~N})+640 \mathrm{~N} \\
& R_{x}=622.55 \mathrm{~N} \\
& R=R_{x}=623 \mathrm{~N} \\
& R=623 \mathrm{~N}
\end{aligned}
$$

SOLUTION

Using the x and y axes shown:

$$
\begin{align*}
R_{x}=\Sigma F_{x} & =T_{A C} \sin 10^{\circ}+(50 \mathrm{lb}) \cos 35^{\circ}+(75 \mathrm{lb}) \cos 60^{\circ} \\
& =T_{A C} \sin 10^{\circ}+78.458 \mathrm{lb} \tag{1}\\
R_{y}=\Sigma F_{y} & =(50 \mathrm{lb}) \sin 35^{\circ}+(75 \mathrm{lb}) \sin 60^{\circ}-T_{A C} \cos 10^{\circ} \\
R_{y}= & 93.631 \mathrm{lb}-T_{A C} \cos 10^{\circ} \tag{2}
\end{align*}
$$

(a) $\operatorname{Set} R_{y}=0$ in Eq. (2):

$$
\begin{aligned}
93.631 \mathrm{lb}-T_{A C} \cos 10^{\circ} & =0 \\
T_{A C} & =95.075 \mathrm{lb} \quad T_{A C}=95.1 \mathrm{lb}
\end{aligned}
$$

(b) Substituting for $T_{A C}$ in Eq. (1):

$$
\begin{array}{rlr}
R_{x} & =(95.075 \mathrm{lb}) \sin 10^{\circ}+78.458 \mathrm{lb} & \\
& =94.968 \mathrm{lb} \\
R & =R_{x} & R=95.0 \mathrm{lb}
\end{array}
$$

PROBLEM 2.42

For the block of Problems 2.37 and 2.38, determine (a) the required value of α if the resultant of the three forces shown is to be parallel to the incline, (b) the corresponding magnitude of the resultant.

SOLUTION

Select the x axis to be along $a a^{\prime}$.
Then

$$
\begin{equation*}
R_{x}=\Sigma F_{x}=(60 \mathrm{lb})+(80 \mathrm{lb}) \cos \alpha+(120 \mathrm{lb}) \sin \alpha \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{y}=\Sigma F_{y}=(80 \mathrm{lb}) \sin \alpha-(120 \mathrm{lb}) \cos \alpha \tag{2}
\end{equation*}
$$

(a) Set $R_{y}=0$ in Eq. (2).

$$
(80 \mathrm{lb}) \sin \alpha-(120 \mathrm{lb}) \cos \alpha=0
$$

Dividing each term by $\cos \alpha$ gives:

$$
\begin{aligned}
(80 \mathrm{lb}) \tan \alpha & =120 \mathrm{lb} \\
\tan \alpha & =\frac{120 \mathrm{lb}}{80 \mathrm{lb}} \\
\alpha & =56.310^{\circ} \quad \alpha=56.3^{\circ}
\end{aligned}
$$

(b) Substituting for α in Eq. (1) gives:

$$
R_{x}=60 \mathrm{lb}+(80 \mathrm{lb}) \cos 56.31^{\circ}+(120 \mathrm{lb}) \sin 56.31^{\circ}=204.22 \mathrm{lb} \quad R_{x}=204 \mathrm{lb}
$$

PROBLEM 2.43

Two cables are tied together at C and are loaded as shown. Determine the tension (a) in cable $A C,(b)$ in cable $B C$.

SOLUTION

Free-Body Diagram

Force Triangle

Law of sines:
$\frac{T_{A C}}{\sin 60^{\circ}}=\frac{T_{B C}}{\sin 40^{\circ}}=\frac{400 \mathrm{lb}}{\sin 80^{\circ}}$
(a)
(b)
$T_{A C}=\frac{400 \mathrm{lb}}{\sin 80^{\circ}}\left(\sin 60^{\circ}\right)$
$T_{A C}=352 \mathrm{lb}$
$T_{B C}=\frac{400 \mathrm{lb}}{\sin 80^{\circ}}\left(\sin 40^{\circ}\right)$
$T_{B C}=261 \mathrm{lb}$

SOLUTION

Free-Body Diagram

Force Triangle

Law of sines:

$$
\frac{T_{A C}}{\sin 60^{\circ}}=\frac{T_{B C}}{\sin 35^{\circ}}=\frac{6 \mathrm{kN}}{\sin 85^{\circ}}
$$

(a)

$$
T_{A C}=\frac{6 \mathrm{kN}}{\sin 85^{\circ}}\left(\sin 60^{\circ}\right)
$$

$$
T_{A C}=5.22 \mathrm{kN}
$$

(b)

$$
T_{B C}=\frac{6 \mathrm{kN}}{\sin 85^{\circ}}\left(\sin 35^{\circ}\right)
$$

$$
T_{B C}=3.45 \mathrm{kN}
$$

PROBLEM 2.45

Two cables are tied together at C and loaded as shown. Determine the tension (a) in cable $A C,(b)$ in cable $B C$.

SOLUTION

$$
\begin{aligned}
\tan \alpha & =\frac{1.4}{4.8} \\
\alpha & =16.2602^{\circ} \\
\tan \beta & =\frac{1.6}{3} \\
\beta & =28.073^{\circ}
\end{aligned}
$$

Force Triangle

(a)

$$
T_{A C}=\frac{1.98 \mathrm{kN}}{\sin 44.333^{\circ}} \sin 61.927^{\circ} \quad T_{A C}=2.50 \mathrm{kN}
$$

(b)

$$
T_{B C}=\frac{1.98 \mathrm{kN}}{\sin 44.333^{\circ}} \sin 73.740^{\circ}
$$

$$
T_{B C}=2.72 \mathrm{kN}
$$

PROBLEM 2.46

Two cables are tied together at C and are loaded as shown. Knowing that $\mathbf{P}=500 \mathrm{~N}$ and $\alpha=60^{\circ}$, determine the tension in (a) in cable $A C,(b)$ in cable $B C$.

SOLUTION

Free-Body Diagram

Law of sines:

$$
\frac{T_{A C}}{\sin 35^{\circ}}=\frac{T_{B C}}{\sin 75^{\circ}}=\frac{500 \mathrm{~N}}{\sin 70^{\circ}}
$$

(a)
(b)

$$
T_{A C}=\frac{500 \mathrm{~N}}{\sin 70^{\circ}} \sin 35^{\circ}
$$

$$
T_{A C}=305 \mathrm{~N}
$$

$$
T_{B C}=\frac{500 \mathrm{~N}}{\sin 70^{\circ}} \sin 75^{\circ}
$$

$$
T_{B C}=514 \mathrm{~N}
$$

SOLUTION

Free-Body Diagram

$$
\begin{aligned}
W & =\mathrm{mg} \\
& =(200 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =1962 \mathrm{~N}
\end{aligned}
$$

Law of sines:

$$
\frac{T_{A C}}{\sin 15^{\circ}}=\frac{T_{B C}}{\sin 105^{\circ}}=\frac{1962 \mathrm{~N}}{\sin 60^{\circ}}
$$

(a)
$T_{A C}=\frac{(1962 \mathrm{~N}) \sin 15^{\circ}}{\sin 60^{\circ}}$
$T_{B C}=\frac{(1962 \mathrm{~N}) \sin 105^{\circ}}{\sin 60^{\circ}}$

Force Triangle

$T_{A C}=586 \mathrm{~N}$
$T_{B C}=2190 \mathrm{~N}$

SOLUTION

Free-Body Diagram

Force Triangle

Law of sines:

$$
\frac{T_{A C}}{\sin 110^{\circ}}=\frac{T_{B C}}{\sin 5^{\circ}}=\frac{1200 \mathrm{lb}}{\sin 65^{\circ}}
$$

(a)
(b)

$$
\begin{array}{ll}
T_{A C}=\frac{1200 \mathrm{lb}}{\sin 65^{\circ}} \sin 110^{\circ} & T_{A C}=1244 \mathrm{lb} \\
T_{B C}=\frac{1200 \mathrm{lb}}{\sin 65^{\circ}} \sin 5^{\circ} & T_{B C}=115.4 \mathrm{lb}
\end{array}
$$

SOLUTION

Free-Body Diagram

$$
\xrightarrow{+} \Sigma F_{x}=0 \quad-T_{C A} \sin 30^{\circ}+T_{C B} \sin 30^{\circ}-P \cos 45^{\circ}-200 \mathrm{~N}=0
$$

For $P=200 \mathrm{~N}$ we have,

$$
\begin{array}{r}
-0.5 T_{C A}+0.5 T_{C B}+212.13-200=0 \\
+\uparrow \Sigma F_{y}=0 \quad T_{C A} \cos 30^{\circ}-T_{C B} \cos 30^{\circ}-P \sin 45^{\circ}=0 \\
0.86603 T_{C A}+0.86603 T_{C B}-212.13=0
\end{array}
$$

Solving equations (1) and (2) simultaneously gives,

$$
T_{C A}=134.6 \mathrm{~N}
$$

$$
T_{C B}=110.4 \mathrm{~N}
$$

PROBLEM 2.50

Two cables are tied together at C and are loaded as shown. Determine the range of values of \mathbf{P} for which both cables remain taut.

SOLUTION

Free-Body Diagram

$\xrightarrow{+} \Sigma F_{x}=0 \quad-T_{C A} \sin 30^{\circ}+T_{C B} \sin 30^{\circ}-P \cos 45^{\circ}-200 \mathrm{~N}=0$
For $T_{C A}=0$ we have,

$$
\begin{equation*}
0.5 T_{C B}+0.70711 P-200=0 \tag{1}
\end{equation*}
$$

$+\dagger \Sigma F_{y}=0 \quad T_{C A} \cos 30^{\circ}-T_{C B} \cos 30^{\circ}-P \sin 45^{\circ}=0$; again setting $T_{C A}=0$ yields,
$0.86603 T_{C B}-0.70711 P=0$
Adding equations (1) and (2) gives, $1.36603 T_{C B}=200$ hence $T_{C B}=146.410 \mathrm{~N}$ and $P=179.315 \mathrm{~N}$ Substituting for $T_{C B}=0$ into the equilibrium equations and solving simultaneously gives,

$$
\begin{aligned}
& -0.5 T_{C A}+0.70711 P-200=0 \\
& 0.86603 T_{C A}-0.70711 P=0
\end{aligned}
$$

And $T_{C A}=546.40 \mathrm{~N}, P=669.20 \mathrm{~N}$ Thus for both cables to remain taut, load P must be within the range of 179.315 N and 669.20 N .

$$
179.3 \mathrm{~N}<P<669 \mathrm{~N}
$$

SOLUTION

Free-Body Diagram

Resolving the forces into x - and y-directions:

$$
\mathbf{R}=\mathbf{P}+\mathbf{Q}+\mathbf{F}_{A}+\mathbf{F}_{B}=0
$$

Substituting components:

$$
\begin{aligned}
\mathbf{R}= & -(500 \mathrm{lb}) \mathbf{j}+\left[(650 \mathrm{lb}) \cos 50^{\circ}\right] \mathbf{i} \\
& -\left[(650 \mathrm{lb}) \sin 50^{\circ}\right] \mathbf{j} \\
& +F_{B} \mathbf{i}-\left(F_{A} \cos 50^{\circ}\right) \mathbf{i}+\left(F_{A} \sin 50^{\circ}\right) \mathbf{j}=0 \quad \underline{F}_{B}
\end{aligned}
$$

In the y-direction (one unknown force):

$$
-500 \mathrm{lb}-(650 \mathrm{lb}) \sin 50^{\circ}+F_{A} \sin 50^{\circ}=0
$$

Thus,

$$
\begin{aligned}
F_{A} & =\frac{500 \mathrm{lb}+(650 \mathrm{lb}) \sin 50^{\circ}}{\sin 50^{\circ}} \\
& =1302.70 \mathrm{lb}
\end{aligned}
$$

$$
F_{A}=1303 \mathrm{lb}
$$

In the x-direction:
$(650 \mathrm{lb}) \cos 50^{\circ}+F_{B}-F_{A} \cos 50^{\circ}=0$
Thus,

$$
\begin{aligned}
F_{B} & =F_{A} \cos 50^{\circ}-(650 \mathrm{lb}) \cos 50^{\circ} \\
& =(1302.70 \mathrm{lb}) \cos 50^{\circ}-(650 \mathrm{lb}) \cos 50^{\circ} \\
& =419.55 \mathrm{lb}
\end{aligned} F_{B}=420 \mathrm{lb}
$$

SOLUTION

Free-Body Diagram

Resolving the forces into x - and y-directions:

$$
\text { Substituting components: } \quad \begin{aligned}
\mathbf{R}= & \mathbf{P}+\mathbf{Q}+\mathbf{F}_{A}+\mathbf{F}_{B}=0 \\
\mathbf{R}= & -P \mathbf{j}+Q \cos 50^{\circ} \mathbf{i}-Q \sin 50^{\circ} \mathbf{j} \\
& -\left[(750 \mathrm{lb}) \cos 50^{\circ}\right] \mathbf{i} \\
& +\left[(750 \mathrm{lb}) \sin 50^{\circ}\right] \mathbf{j}+(400 \mathrm{lb}) \mathbf{i}
\end{aligned}
$$

In the x-direction (one unknown force):

$$
\begin{aligned}
& Q \cos 50^{\circ}-\left[(750 \mathrm{lb}) \cos 50^{\circ}\right]+400 \mathrm{lb}=0 \\
& Q
\end{aligned} \begin{aligned}
Q & =\frac{(750 \mathrm{lb}) \cos 50^{\circ}-400 \mathrm{lb}}{\cos 50^{\circ}} \\
& =127.710 \mathrm{lb}
\end{aligned}
$$

In the y-direction:

$$
-P-Q \sin 50^{\circ}+(750 \mathrm{lb}) \sin 50^{\circ}=0
$$

$$
\begin{aligned}
P & =-Q \sin 50^{\circ}+(750 \mathrm{lb}) \sin 50^{\circ} \\
& =-(127.710 \mathrm{lb}) \sin 50^{\circ}+(750 \mathrm{lb}) \sin 50^{\circ} \\
& =476.70 \mathrm{lb}
\end{aligned}
$$

$$
P=477 \mathrm{lb} ; \quad Q=127.7 \mathrm{lb}
$$

PROBLEM 2.53

A welded connection is in equilibrium under the action of the four forces shown. Knowing that $F_{A}=8 \mathrm{kN}$ and $F_{B}=16 \mathrm{kN}$, determine the magnitudes of the other two forces.

SOLUTION

Free-Body Diagram of Connection

With

$$
\begin{array}{rlr}
F_{A} & =8 \mathrm{kN} \\
F_{B} & =16 \mathrm{kN} & \\
F_{C} & =\frac{4}{5}(16 \mathrm{kN})-\frac{4}{5}(8 \mathrm{kN}) & F_{C}=6.40 \mathrm{kN} \\
\Sigma F_{y} & =0:-F_{D}+\frac{3}{5} F_{B}-\frac{3}{5} F_{A}=0 &
\end{array}
$$

With F_{A} and F_{B} as above: $\quad F_{D}=\frac{3}{5}(16 \mathrm{kN})-\frac{3}{5}(8 \mathrm{kN}) \quad F_{D}=4.80 \mathrm{kN}$

SOLUTION

or
With

$$
\begin{array}{rlrl}
F_{A} & =5 \mathrm{kN}, \quad F_{D}=8 \mathrm{kN} & \\
F_{B} & =\frac{5}{3}\left[6 \mathrm{kN}+\frac{3}{5}(5 \mathrm{kN})\right] & F_{B}=15.00 \mathrm{kN} \\
\Sigma F_{x} & =0:-F_{C}+\frac{4}{5} F_{B}-\frac{4}{5} F_{A}=0 & \\
F_{C} & =\frac{4}{5}\left(F_{B}-F_{A}\right) & & \\
& =\frac{4}{5}(15 \mathrm{kN}-5 \mathrm{kN}) & F_{C}=8.00 \mathrm{kN}
\end{array}
$$

SOLUTION

Free-Body Diagram

$$
\begin{align*}
&+ \\
& \xrightarrow{+} F_{x}=0: T_{A C B} \cos 10^{\circ}-T_{A C B} \cos 30^{\circ}-T_{C D} \cos 30^{\circ}=0 \tag{1}\\
& T_{C D}=0.137158 T_{A C B} \\
&+\uparrow \Sigma F_{y}=0: T_{A C B} \sin 10^{\circ}+T_{A C B} \sin 30^{\circ}+T_{C D} \sin 30^{\circ}-200=0 \tag{2}\\
& 0.67365 T_{A C B}+0.5 T_{C D}=200
\end{align*}
$$

(a) Substitute (1) into (2): $0.67365 T_{A C B}+0.5\left(0.137158 T_{A C B}\right)=200$

$$
\begin{array}{rlr}
T_{A C B} & =269.46 \mathrm{lb} & T_{A C B}=269 \mathrm{lb} \\
T_{C D} & =0.137158(269.46 \mathrm{lb}) & T_{C D}=37.0 \mathrm{lb}
\end{array}
$$

(b) From (1):

SOLUTION

Free-Body Diagram

$\xrightarrow{+} \Sigma F_{x}=0: \quad T_{A C B} \cos 15^{\circ}-T_{A C B} \cos 25^{\circ}-(20 \mathrm{lb}) \cos 25^{\circ}=0$
$T_{A C B}=304.04 \mathrm{lb}$
$+\uparrow \Sigma F_{y}=0: \quad(304.04 \mathrm{lb}) \sin 15^{\circ}+(304.04 \mathrm{lb}) \sin 25^{\circ}$
$+(20 \mathrm{lb}) \sin 25^{\circ}-W=0$

$$
W=215.64 \mathrm{lb}
$$

(a) $\quad W=216 \mathrm{lb}$
(b) $T_{A C B}=304 \mathrm{lb}$

SOLUTION

Free-Body Diagram

Force Triangle

(a) For a minimum tension in cable $B C$, set angle between cables to 90 degrees.

By inspection,

$$
\begin{aligned}
& T_{A C}=(6 \mathrm{kN}) \cos 35^{\circ} \\
& T_{B C}=(6 \mathrm{kN}) \sin 35^{\circ}
\end{aligned}
$$

$$
T_{A C}=4.91 \mathrm{kN}
$$

$$
T_{B C}=3.44 \mathrm{kN}
$$

(b) For equal tension in both cables, the force triangle will be an isosceles.

Therefore, by inspection,

$$
T_{A C}=T_{B C}=(1 / 2) \frac{6 \mathrm{kN}}{\cos 35^{\circ}}
$$

$$
T_{A C}=T_{B C}=3.66 \mathrm{kN}
$$

PROBLEM 2.58

For the cables of Problem 2.46, it is known that the maximum allowable tension is 600 N in cable $A C$ and 750 N in cable $B C$. Determine (a) the maximum force \mathbf{P} that can be applied at C, (b) the corresponding value of α.

SOLUTION

Free-Body Diagram

(a) Law of cosines

$$
P^{2}=(600)^{2}+(750)^{2}-2(600)(750) \cos \left(25^{\circ}+45^{\circ}\right)
$$

$$
P=784.02 \mathrm{~N}
$$

$$
P=784 \mathrm{~N}
$$

(b) Law of sines

$$
\begin{aligned}
\frac{\sin \beta}{600 \mathrm{~N}} & =\frac{\sin \left(25^{\circ}+45^{\circ}\right)}{784.02 \mathrm{~N}} \\
\beta & =46.0^{\circ} \quad \therefore \quad \alpha=46.0^{\circ}+25^{\circ} \quad \alpha=71.0^{\circ}
\end{aligned}
$$

SOLUTION

Force Triangle

To be smallest, $T_{B C}$ must be perpendicular to the direction of $T_{A C}$.
(a) Thus,
$\alpha=5.00^{\circ}$
$\alpha=5.00^{\circ}$
$T_{B C}=104.6 \mathrm{lb}$

SOLUTION

Free-Body Diagram

$\Sigma F_{x}=0: \quad-T_{B C}-Q \cos 60^{\circ}+75 \mathrm{lb}=0$

$$
\begin{equation*}
T_{B C}=75 \mathrm{lb}-Q \cos 60^{\circ} \tag{1}
\end{equation*}
$$

$$
\Sigma F_{y}=0: \quad T_{A C}-Q \sin 60^{\circ}=0
$$

$$
\begin{equation*}
T_{A C}=Q \sin 60^{\circ} \tag{2}
\end{equation*}
$$

Requirement: $\quad T_{A C}=60 \mathrm{lb}:$
From Eq. (2): $\quad Q \sin 60^{\circ}=60 \mathrm{lb}$

$$
Q=69.3 \mathrm{lb}
$$

Requirement:

$$
T_{B C}=60 \mathrm{lb}:
$$

From Eq. (1): $\quad 75 \mathrm{lb}-Q \cos 60^{\circ}=60 \mathrm{lb}$

$$
Q=30.0 \mathrm{lb} 30.0 \mathrm{lb} \leq Q \leq 69.3 \mathrm{lb}
$$

PROBLEM 2.61

A movable bin and its contents have a combined weight of 2.8 kN . Determine the shortest chain sling $A C B$ that can be used to lift the loaded bin if the tension in the chain is not to exceed 5 kN .

SOLUTION

Free-Body Diagram

Isosceles Force Triangle

Law of sines: $\quad \sin \alpha=\frac{\frac{1}{2}(2.8 \mathrm{kN})}{T_{A C}}$

$$
\begin{aligned}
T_{A C} & =5 \mathrm{kN} \\
\sin \alpha & =\frac{\frac{1}{2}(2.8 \mathrm{kN})}{5 \mathrm{kN}}
\end{aligned}
$$

$$
\alpha=16.2602^{\circ}
$$

From Eq. (1): $\tan 16.2602^{\circ}=\frac{h}{0.6 \mathrm{~m}} \quad \therefore \quad h=0.175000 \mathrm{~m}$
Half-length of chain $=A C=\sqrt{(0.6 \mathrm{~m})^{2}+(0.175 \mathrm{~m})^{2}}$

$$
=0.625 \mathrm{~m}
$$

Total length:

$$
=2 \times 0.625 \mathrm{~m}
$$

$$
1.250 \mathrm{~m}
$$

PROBLEM 2.62

For $W=800 \mathrm{~N}, P=200 \mathrm{~N}$, and $d=600 \mathrm{~mm}$, determine the value of h consistent with equilibrium.

SOLUTION

Free-Body Diagram

$T_{A C}=T_{B C}=800 \mathrm{~N}$

$$
A C=B C=\sqrt{\left(h^{2}+d^{2}\right)}
$$

$$
\Sigma F_{y}=0: \quad 2(800 \mathrm{~N}) \frac{h}{\sqrt{h^{2}+d^{2}}}-P=0
$$

$$
800=\frac{P}{2} \sqrt{1+\left(\frac{d}{h}\right)^{2}}
$$

Data: $\quad P=200 \mathrm{~N}, d=600 \mathrm{~mm}$ and solving for h

$$
800 \mathrm{~N}=\frac{200 \mathrm{~N}}{2} \sqrt{1+\left(\frac{600 \mathrm{~mm}}{h}\right)^{2}}
$$

$$
h=75.6 \mathrm{~mm}
$$

SOLUTION

(a) Free Body: Collar \boldsymbol{A}

Force Triangle

$$
\frac{P}{4.5}=\frac{50 \mathrm{lb}}{20.5}
$$

$$
P=10.98 \mathrm{lb}
$$

Force Triangle

$\frac{P}{15}=\frac{50 \mathrm{lb}}{25} \quad P=30.0 \mathrm{lb}$

SOLUTION

Free Body: Collar A

Force Triangle

$$
\begin{aligned}
N^{2} & =(50)^{2}-(48)^{2}=196 \\
N & =14.00 \mathrm{lb}
\end{aligned}
$$

Similar Triangles

$$
\frac{x}{20 \mathrm{in} .}=\frac{48 \mathrm{lb}}{14 \mathrm{lb}}
$$

$$
x=68.6 \mathrm{in} .
$$

PROBLEM 2.65

Three forces are applied to a bracket as shown. The directions of the two $150-\mathrm{N}$ forces may vary, but the angle between these forces is always 50°. Determine the range of values of α for which the magnitude of the resultant of the forces acting at A is less than 600 N .

SOLUTION

Combine the two $150-\mathrm{N}$ forces into a resultant force Q :

Equivalent loading at A :

Using the law of cosines:

$$
\begin{aligned}
(600 \mathrm{~N})^{2} & =(500 \mathrm{~N})^{2}+(271.89 \mathrm{~N})^{2}+2(500 \mathrm{~N})(271.89 \mathrm{~N}) \cos \left(55^{\circ}+\alpha\right) \\
\cos \left(55^{\circ}+\alpha\right) & =0.132685
\end{aligned}
$$

Two values for α : $\quad 55^{\circ}+\alpha=82.375$
$\alpha=27.4^{\circ}$

$$
\begin{aligned}
& 55^{\circ}+\alpha=-82.375^{\circ} \\
& 55^{\circ}+\alpha=360^{\circ}-82.375^{\circ}
\end{aligned}
$$

or

$$
\alpha=222.6^{\circ}
$$

For $R<600 \mathrm{lb}$: $27.4^{\circ}<\alpha<222.6^{\circ}$

SOLUTION

Free-Body Diagram: Pulley \boldsymbol{A}

$$
\begin{aligned}
\xrightarrow{+} \Sigma F_{x} & =0:-2 P\left(\frac{5}{\sqrt{281}}\right)+P \cos \alpha=0 \\
\cos \alpha & =0.59655 \\
\alpha & = \pm 53.377^{\circ}
\end{aligned}
$$

For $\alpha=+53.377^{\circ}$:

$$
+\uparrow \Sigma F_{y}=0: \quad 2 P\left(\frac{16}{\sqrt{281}}\right)+P \sin 53.377^{\circ}-1962 \mathrm{~N}=0
$$

$$
\mathbf{P}=724 \mathrm{~N}<53.4^{\circ}
$$

For $\alpha=-53.377^{\circ}$:

$$
+\dagger \Sigma F_{y}=0: \quad 2 P\left(\frac{16}{\sqrt{281}}\right)+P \sin \left(-53.377^{\circ}\right)-1962 \mathrm{~N}=0
$$

$$
\mathbf{P}=1773\left\ulcorner 53.4^{\circ}\right.
$$

SOLUTION

Free-Body Diagram of Pulley

(a)

$$
\begin{aligned}
+\uparrow \Sigma F_{y}=0: \quad 2 T-(600 \mathrm{lb}) & =0 \\
T & =\frac{1}{2}(600 \mathrm{lb})
\end{aligned}
$$

160016

$$
T=300 \mathrm{lb}
$$

(b)

$$
\begin{aligned}
+\uparrow \Sigma F_{y}=0: \quad 2 T-(600 \mathrm{lb}) & =0 \\
T & =\frac{1}{2}(600 \mathrm{lb})
\end{aligned}
$$

$$
T=300 \mathrm{lb}
$$

(c)

$$
\begin{aligned}
+\uparrow \Sigma F_{y}=0: \quad 3 T-(600 \mathrm{lb}) & =0 \\
T & =\frac{1}{3}(600 \mathrm{lb})
\end{aligned}
$$

(d)

$$
\begin{aligned}
+\uparrow \Sigma F_{y}=0: \quad 3 T-(600 \mathrm{lb}) & =0 \\
T & =\frac{1}{3}(600 \mathrm{lb})
\end{aligned}
$$

$T=200 \mathrm{lb}$

$$
T=200 \mathrm{lb}
$$

(e)

$$
\begin{aligned}
+\uparrow \Sigma F_{y}=0: \quad 4 T-(600 \mathrm{lb}) & =0 \\
T & =\frac{1}{4}(600 \mathrm{lb})
\end{aligned}
$$

$$
T=150.0 \mathrm{lb}
$$

PROBLEM 2.68

Solve Parts b and d of Problem 2.67, assuming that the free end of the rope is attached to the crate.

PROBLEM 2.67 A 600-lb crate is supported by several rope-and-pulley arrangements as shown. Determine for each arrangement the tension in the rope. (See the hint for Problem 2.66.)

SOLUTION

Free-Body Diagram of Pulley and Crate

(b)

$$
\begin{aligned}
+\uparrow \Sigma F_{y}=0: \quad 3 T-(600 \mathrm{lb}) & =0 \\
T & =\frac{1}{3}(600 \mathrm{lb})
\end{aligned}
$$

$$
T=200 \mathrm{lb}
$$

(d)

$$
\begin{aligned}
+\uparrow \Sigma F_{y}=0: \quad 4 T-(600 \mathrm{lb}) & =0 \\
T & =\frac{1}{4}(600 \mathrm{lb})
\end{aligned}
$$

$$
T=150.0 \mathrm{lb}
$$

SOLUTION

Free-Body Diagram: Pulley C

(a) $\xrightarrow{+} \Sigma F_{x}=0: \quad T_{A C B}\left(\cos 25^{\circ}-\cos 55^{\circ}\right)-(750 \mathrm{~N}) \cos 55^{\circ}=0$

Hence: $\quad T_{A C B}=1292.88 \mathrm{~N}$

$$
T_{A C B}=1293 \mathrm{~N}
$$

(b) $\quad+\dagger \Sigma F_{y}=0: \quad T_{A C B}\left(\sin 25^{\circ}+\sin 55^{\circ}\right)+(750 \mathrm{~N}) \sin 55^{\circ}-Q=0$

$$
(1292.88 \mathrm{~N})\left(\sin 25^{\circ}+\sin 55^{\circ}\right)+(750 \mathrm{~N}) \sin 55^{\circ}-Q=0
$$

or

$$
Q=2219.8 \mathrm{~N} \quad Q=2220 \mathrm{~N}
$$

PROBLEM 2.70

An $1800-\mathrm{N}$ load \mathbf{Q} is applied to the pulley C, which can roll on the cable $A C B$. The pulley is held in the position shown by a second cable $C A D$, which passes over the pulley A and supports a load \mathbf{P}. Determine (a) the tension in cable $A C B$, (b) the magnitude of load \mathbf{P}.

SOLUTION

Free-Body Diagram: Pulley C

$$
\xrightarrow{+} \Sigma F_{x}=0: \quad T_{A C B}\left(\cos 25^{\circ}-\cos 55^{\circ}\right)-P \cos 55^{\circ}=0
$$

or

$$
\begin{equation*}
P=0.58010 T_{A C B} \tag{1}
\end{equation*}
$$

$+\dagger \Sigma F_{y}=0: \quad T_{A C B}\left(\sin 25^{\circ}+\sin 55^{\circ}\right)+P \sin 55^{\circ}-1800 \mathrm{~N}=0$
or

$$
\begin{equation*}
1.24177 T_{A C B}+0.81915 P=1800 \mathrm{~N} \tag{2}
\end{equation*}
$$

(a) Substitute Equation (1) into Equation (2):

$$
1.24177 T_{A C B}+0.81915\left(0.58010 T_{A C B}\right)=1800 \mathrm{~N}
$$

Hence:

$$
T_{A C B}=1048.37 \mathrm{~N}
$$

$$
T_{A C B}=1048 \mathrm{~N}
$$

(b) Using (1), $\quad P=0.58010(1048.37 \mathrm{~N})=608.16 \mathrm{~N}$

$$
P=608 \mathrm{~N}
$$

SOLUTION

(a)
$F_{x}=(600 \mathrm{~N}) \sin 25^{\circ} \cos 30^{\circ}$
$F_{x}=219.60 \mathrm{~N} \quad F_{x}=220 \mathrm{~N}$
$F_{y}=(600 \mathrm{~N}) \cos 25^{\circ}$
$F_{y}=543.78 \mathrm{~N} \quad F_{y}=544 \mathrm{~N}$
$F_{z}=(380.36 \mathrm{~N}) \sin 25^{\circ} \sin 30^{\circ}$
$F_{z}=126.785 \mathrm{~N}$
$F_{z}=126.8 \mathrm{~N}$
(b)
$\cos \theta_{x}=\frac{F_{x}}{F}=\frac{219.60 \mathrm{~N}}{600 \mathrm{~N}}$
$\theta_{x}=68.5^{\circ}$
$\cos \theta_{y}=\frac{F_{y}}{F}=\frac{543.78 \mathrm{~N}}{600 \mathrm{~N}}$
$\theta_{y}=25.0^{\circ}$
$\cos \theta_{z}=\frac{F_{z}}{F}=\frac{126.785 \mathrm{~N}}{600 \mathrm{~N}}$

$$
\theta_{z}=77.8^{\circ}
$$

SOLUTION

(a)
$F_{x}=-(450 \mathrm{~N}) \cos 35^{\circ} \sin 40^{\circ}$
$F_{x}=-236.94 \mathrm{~N} \quad F_{x}=-237 \mathrm{~N}$
$F_{y}=(450 \mathrm{~N}) \sin 35^{\circ}$
$F_{y}=258.11 \mathrm{~N} \quad F_{y}=258 \mathrm{~N}$
$F_{z}=(450 \mathrm{~N}) \cos 35^{\circ} \cos 40^{\circ}$
$F_{z}=282.38 \mathrm{~N}$
$F_{z}=282 \mathrm{~N}$
$\cos \theta_{x}=\frac{F_{x}}{F}=\frac{-236.94 \mathrm{~N}}{450 \mathrm{~N}}$
$\theta_{x}=121.8^{\circ}$
$\cos \theta_{y}=\frac{F_{y}}{F}=\frac{258.11 \mathrm{~N}}{450 \mathrm{~N}} \quad \theta_{y}=55.0^{\circ}$
$\cos \theta_{z}=\frac{F_{z}}{F}=\frac{282.38 \mathrm{~N}}{450 \mathrm{~N}} \quad \theta_{z}=51.1^{\circ}$
Note: From the given data, we could have computed directly $\theta_{y}=90^{\circ}-35^{\circ}=55^{\circ}$, which checks with the answer obtained.

PROBLEM 2.73

A gun is aimed at a point A located 35° east of north. Knowing that the barrel of the gun forms an angle of 40° with the horizontal and that the maximum recoil force is 400 N , determine (a) the x, y, and z components of that force, (b) the values of the angles θ_{x}, θ_{y}, and θ_{z} defining the direction of the recoil force. (Assume that the x, y, and z axes are directed, respectively, east, up, and south.)

SOLUTION

Recoil force

$$
\begin{aligned}
F & =400 \mathrm{~N} \\
\therefore \quad F_{H} & =(400 \mathrm{~N}) \cos 40^{\circ} \\
& =306.42 \mathrm{~N}
\end{aligned}
$$

(a)

$$
\begin{aligned}
F_{x} & =-F_{H} \sin 35^{\circ} & \\
& =-(306.42 \mathrm{~N}) \sin 35^{\circ} & F_{x}=-175.8 \mathrm{~N} \\
& =-175.755 \mathrm{~N} & \\
F_{y} & =-F \sin 40^{\circ} & \\
& =-(400 \mathrm{~N}) \sin 40^{\circ} & F_{y}=-257 \mathrm{~N}
\end{aligned}
$$

$$
F_{z}=+F_{H} \cos 35^{\circ}
$$

$$
=+(306.42 \mathrm{~N}) \cos 35^{\circ}
$$

$$
=+251.00 \mathrm{~N}
$$

$$
F_{z}=+251 \mathrm{~N}
$$

(b)

$$
\begin{array}{rlr}
\cos \theta_{x}=\frac{F_{x}}{F}=\frac{-175.755 \mathrm{~N}}{400 \mathrm{~N}} & \theta_{x}=116.1^{\circ} \\
\cos \theta_{y}=\frac{F_{y}}{F}=\frac{-257.12 \mathrm{~N}}{400 \mathrm{~N}} & \theta_{y}=130.0^{\circ} \\
\cos \theta_{z}=\frac{F_{z}}{F}=\frac{251.00 \mathrm{~N}}{400 \mathrm{~N}} & \theta_{z}=51.1^{\circ}
\end{array}
$$

PROBLEM 2.74

Solve Problem 2.73, assuming that point A is located 15° north of west and that the barrel of the gun forms an angle of 25° with the horizontal.

PROBLEM 2.73 A gun is aimed at a point A located 35° east of north. Knowing that the barrel of the gun forms an angle of 40° with the horizontal and that the maximum recoil force is 400 N , determine (a) the x, y, and z components of that force, (b) the values of the angles θ_{x}, θ_{y}, and θ_{z} defining the direction of the recoil force. (Assume that the x, y, and z axes are directed, respectively, east, up, and south.)

SOLUTION

Recoil force

$$
\begin{aligned}
F & =400 \mathrm{~N} \\
\therefore \quad F_{H} & =(400 \mathrm{~N}) \cos 25^{\circ} \\
& =362.52 \mathrm{~N}
\end{aligned}
$$

(a)

$$
\begin{aligned}
F_{x} & =+F_{H} \cos 15^{\circ} \\
& =+(362.52 \mathrm{~N}) \cos 15^{\circ}
\end{aligned}
$$

$$
=+350.17 \mathrm{~N} \quad F_{x}=+350 \mathrm{~N}
$$

$$
F_{y}=-F \sin 25^{\circ}
$$

$$
=-(400 \mathrm{~N}) \sin 25^{\circ}
$$

$$
=-169.047 \mathrm{~N}
$$

$$
F_{y}=-169.0 \mathrm{~N}
$$

$$
F_{z}=+F_{H} \sin 15^{\circ}
$$

$$
=+(362.52 \mathrm{~N}) \sin 15^{\circ}
$$

$$
=+93.827 \mathrm{~N} \quad F_{z}=+93.8 \mathrm{~N}
$$

(b)

$$
\begin{array}{ll}
\cos \theta_{x}=\frac{F_{x}}{F}=\frac{+350.17 \mathrm{~N}}{400 \mathrm{~N}} & \theta_{x}=28.9^{\circ} \\
\cos \theta_{y}=\frac{F_{y}}{F}=\frac{-169.047 \mathrm{~N}}{400 \mathrm{~N}} & \theta_{y}=115.0^{\circ} \\
\cos \theta_{z}=\frac{F_{z}}{F}=\frac{+93.827 \mathrm{~N}}{400 \mathrm{~N}} & \theta_{z}=76.4^{\circ}
\end{array}
$$

SOLUTION

$$
\begin{aligned}
F_{h} & =F \cos 60^{\circ} \\
& =(50 \mathrm{lb}) \cos 60^{\circ} \\
F_{h} & =25.0 \mathrm{lb}
\end{aligned}
$$

$F_{x}=-F_{h} \cos 35^{\circ}$	$F_{y}=F \sin 60^{\circ}$	$F_{z}=-F_{h} \sin 35^{\circ}$
$F_{x}=(-25.0 \mathrm{lb}) \cos 35^{\circ}$	$F_{y}=(50.0 \mathrm{lb}) \sin 60^{\circ}$	$F_{z}=(-25.0 \mathrm{lb}) \sin 35^{\circ}$
$F_{x}=-20.479 \mathrm{lb}$	$F_{y}=43.301 \mathrm{lb}$	$F_{z}=-14.3394 \mathrm{lb}$

(a)

$$
\begin{gathered}
F_{x}=-20.5 \mathrm{lb} \\
F_{y}=43.3 \mathrm{lb}
\end{gathered}
$$

$$
F_{z}=-14.33 \mathrm{lb}
$$

(b)

$$
\begin{array}{ll}
\cos \theta_{x}=\frac{F_{x}}{F}=\frac{-20.479 \mathrm{lb}}{50 \mathrm{lb}} & \theta_{x}=114.2^{\circ} \\
\cos \theta_{y}=\frac{F_{y}}{F}=\frac{43.301 \mathrm{lb}}{50 \mathrm{lb}} & \theta_{y}=30.0^{\circ} \\
\cos \theta_{z}=\frac{F_{z}}{F}=\frac{-14.3394 \mathrm{lb}}{50 \mathrm{lb}} & \theta_{z}=106.7^{\circ}
\end{array}
$$

SOLUTION

$$
\begin{aligned}
F_{h} & =F \cos 60^{\circ} \\
& =(40 \mathrm{lb}) \cos 60^{\circ} \\
F_{h} & =20.0 \mathrm{lb}
\end{aligned}
$$

(a)

$$
\begin{aligned}
F_{x} & =F_{h} \cos 35^{\circ} & F_{y} & =F \sin 60^{\circ}
\end{aligned} \begin{array}{rlrl}
& =-F_{h} \sin 35^{\circ} \\
& =(20.0 \mathrm{lb}) \cos 35^{\circ} & & =(40 \mathrm{lb}) \sin 60^{\circ}
\end{array} \begin{array}{ll}
& =-(20.0 \mathrm{lb}) \sin 35^{\circ} \\
F_{x} & =16.3830 \mathrm{lb}
\end{array} \quad F_{y}=34.641 \mathrm{lb} \quad F_{z}=-11.4715 \mathrm{lb}
$$

$$
\begin{gathered}
F_{x}=16.38 \mathrm{lb} \\
F_{y}=34.6 \mathrm{lb}
\end{gathered}
$$

$$
F_{z}=-11.47 \mathrm{lb}
$$

(b)

$$
\begin{array}{ll}
\cos \theta_{x}=\frac{F_{x}}{F}=\frac{16.3830 \mathrm{lb}}{40 \mathrm{lb}} & \theta_{x}=65.8^{\circ} \\
\cos \theta_{y}=\frac{F_{y}}{F}=\frac{34.641 \mathrm{lb}}{40 \mathrm{lb}} & \theta_{y}=30.0^{\circ} \\
\cos \theta_{z}=\frac{F_{z}}{F}=\frac{-11.4715 \mathrm{lb}}{40 \mathrm{lb}} & \theta_{z}=106.7^{\circ}
\end{array}
$$

SOLUTION	
$A C$	$=70 \mathrm{ft}$
$O A$	$=56 \mathrm{ft}$
F	$=5250 \mathrm{lb}$
$\cos \theta_{y}$	$=\frac{56 \mathrm{ft}}{70 \mathrm{ft}}$
θ_{y}	$=36.870^{\circ}$
F_{H}	$=F \sin \theta_{y}$
	$=(5250 \mathrm{lb}) \sin 36.870^{\circ}$
	$=3150.0 \mathrm{lb}$

(a) $F_{x}=-F_{H} \sin 50^{\circ}=-(3150.0 \mathrm{lb}) \sin 50^{\circ}=-2413.0 \mathrm{lb}$

$$
F_{x}=-2410 \mathrm{lb}
$$

$$
F_{y}=+F \cos \theta_{y}=+(5250 \mathrm{lb}) \cos 36.870^{\circ}=+4200.0 \mathrm{lb}
$$

$$
\begin{array}{ll}
F_{z}=-F_{H} \cos 50^{\circ}=-3150 \cos 50^{\circ}=-2024.8 \mathrm{lb} & F_{z}=-2025 \mathrm{lb}
\end{array}
$$

(b) $\cos \theta_{x}=\frac{F_{x}}{F}=\frac{-2413.0 \mathrm{lb}}{5250 \mathrm{lb}} \quad \theta_{x}=117.4^{\circ}$

From above: $\quad \theta_{y}=36.870^{\circ} \quad \theta_{y}=36.9^{\circ}$

$$
\theta_{z}=\frac{F_{z}}{F}=\frac{-2024.8 \mathrm{lb}}{5250 \mathrm{lb}} \quad \theta_{z}=112.7^{\circ}
$$

PROBLEM 2.79

Determine the magnitude and direction of the force $\mathbf{F}=(240 \mathrm{~N}) \mathbf{i}-(270 \mathrm{~N}) \mathbf{j}+(680 \mathrm{~N}) \mathbf{k}$.

SOLUTION

$$
\begin{array}{rlrl}
F & =\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}} & & \\
F & =\sqrt{(240 \mathrm{~N})^{2}+(-270 \mathrm{~N})^{2}+(-680 \mathrm{~N})^{2}} & F & =770 \mathrm{~N} . \\
\cos \theta_{x} & =\frac{F_{x}}{F}=\frac{240 \mathrm{~N}}{770 \mathrm{~N}} & \theta_{x}=71.8^{\circ} . \\
\cos \theta_{y} & =\frac{F_{y}}{F}=\frac{-270 \mathrm{~N}}{770 \mathrm{~N}} & \theta_{y}=110.5^{\circ} . \\
\cos \theta_{y} & =\frac{F_{z}}{F}=\frac{680 \mathrm{~N}}{770 \mathrm{~N}} & \theta_{z}=28.0^{\circ} .
\end{array}
$$

PROBLEM 2.80

Determine the magnitude and direction of the force $\mathbf{F}=(320 \mathrm{~N}) \mathbf{i}+(400 \mathrm{~N}) \mathbf{j}-(250 \mathrm{~N}) \mathbf{k}$.

SOLUTION

$$
\begin{array}{rlrl}
F & =\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}} & & \\
F & =\sqrt{(320 \mathrm{~N})^{2}+(400 \mathrm{~N})^{2}+(-250 \mathrm{~N})^{2}} & F & =570 \mathrm{~N} \\
\cos \theta_{x} & =\frac{F_{x}}{F}=\frac{320 \mathrm{~N}}{570 \mathrm{~N}} & \theta_{x}=55.8^{\circ} \\
\cos \theta_{y} & =\frac{F_{y}}{F}=\frac{400 \mathrm{~N}}{570 \mathrm{~N}} & \theta_{y}=45.4^{\circ} \\
\cos \theta_{y} & =\frac{F_{z}}{F}=\frac{-250 \mathrm{~N}}{570 \mathrm{~N}} & \theta_{z} & =116.0^{\circ}
\end{array}
$$

PROBLEM 2.81

A force acts at the origin of a coordinate system in a direction defined by the angles $\theta_{x}=69.3^{\circ}$ and θ_{z} $=57.9^{\circ}$. Knowing that the y component of the force is -174.0 lb , determine (a) the angle $\theta_{y},(b)$ the other components and the magnitude of the force.

SOLUTION

$$
\begin{aligned}
\cos ^{2} \theta_{x}+\cos ^{2} \theta_{y}+\cos ^{2} \theta_{z} & =1 \\
\cos ^{2}\left(69.3^{\circ}\right)+\cos ^{2} \theta_{y}+\cos ^{2}\left(57.9^{\circ}\right) & =1 \\
\cos \theta_{y} & = \pm 0.7699
\end{aligned}
$$

(a) Since $F_{y}<0$, we choose $\cos \theta_{y}=-0.7699$ $\therefore \quad \theta_{y}=140.3^{\circ}$
(b)

$$
\begin{array}{cc}
F_{y}=F \cos \theta_{y} & \\
-174.0 \mathrm{lb}=F(-0.7699) & \\
F=226.0 \mathrm{lb} & F=226 \mathrm{lb} \\
F_{x}=F \cos \theta_{x}=(226.0 \mathrm{lb}) \cos 69.3^{\circ} & F_{x}=79.9 \mathrm{lb} \\
F_{z}=F \cos \theta_{z}=(226.0 \mathrm{lb}) \cos 57.9^{\circ} & F_{z}=120.1 \mathrm{lb}
\end{array}
$$

PROBLEM 2.82

A force acts at the origin of a coordinate system in a direction defined by the angles $\theta_{x}=70.9^{\circ}$ and $\theta_{y}=144.9^{\circ}$. Knowing that the z component of the force is -52.0 lb , determine (a) the angle θ_{z}, (b) the other components and the magnitude of the force.

SOLUTION

$$
\begin{aligned}
\cos ^{2} \theta_{x}+\cos ^{2} \theta_{y}+\cos ^{2} \theta_{z} & =1 \\
\cos ^{2} 70.9^{\circ}+\cos ^{2} 144.9^{\circ}+\cos ^{2} \theta_{z}^{\circ} & =1 \\
\cos \theta_{z} & = \pm 0.47282
\end{aligned}
$$

(a) Since $F_{z}<0$, we choose $\cos \theta_{z}=-0.47282$ $\therefore \quad \theta_{z}=118.2^{\circ}$
(b)

$$
\begin{array}{rlrl}
F_{z} & =F \cos \theta_{z} & \\
-52.0 l b & =F(-0.47282) & \\
F & =110.0 \mathrm{lb} & F=110.0 \mathrm{lb} \\
F_{x} & =F \cos \theta_{x}=(110.0 \mathrm{lb}) \cos 70.9^{\circ} & F_{x}=36.0 \mathrm{lb} \\
F_{y} & =F \cos \theta_{y}=(110.0 \mathrm{lb}) \cos 144.9^{\circ} & F_{y}=-90.0 \mathrm{lb}
\end{array}
$$

PROBLEM 2.83

A force \mathbf{F} of magnitude 210 N acts at the origin of a coordinate system. Knowing that $F_{x}=80 \mathrm{~N}$, $\theta_{z}=151.2^{\circ}$, and $F_{y}<0$, determine (a) the components F_{y} and $F_{z},(b)$ the angles θ_{x} and θ_{y}.

SOLUTION

(a)

$$
\begin{array}{rlr}
F_{z}=F \cos \theta_{z} & =(210 \mathrm{~N}) \cos 151.2^{\circ} \\
& =-184.024 \mathrm{~N} & F_{z}=-184.0 \mathrm{~N}
\end{array}
$$

Then:

$$
F^{2}=F_{x}^{2}+F_{y}^{2}+F_{z}^{2}
$$

So:

$$
(210 \mathrm{~N})^{2}=(80 \mathrm{~N})^{2}+\left(F_{y}\right)^{2}+(184.024 \mathrm{~N})^{2}
$$

Hence:

$$
\begin{aligned}
F_{y} & =-\sqrt{(210 \mathrm{~N})^{2}-(80 \mathrm{~N})^{2}-(184.024 \mathrm{~N})^{2}} & \\
& =-61.929 \mathrm{~N} & F_{y}=-62.0 \mathrm{lb}
\end{aligned}
$$

$$
\begin{aligned}
& \cos \theta_{x}=\frac{F_{x}}{F}=\frac{80 \mathrm{~N}}{210 \mathrm{~N}}=0.38095 \\
& \cos \theta_{y}=\frac{F_{y}}{F}=\frac{61.929 \mathrm{~N}}{210 \mathrm{~N}}=-0.29490
\end{aligned}
$$

$$
\theta_{x}=67.6^{\circ}
$$

$$
\theta_{y}=107.2^{\circ}
$$

PROBLEM 2.84

A force \mathbf{F} of magnitude 1200 N acts at the origin of a coordinate system. Knowing that $\theta_{x}=65^{\circ}, \theta_{y}=40^{\circ}$, and $F_{z}>0$, determine (a) the components of the force, (b) the angle θ_{z}.

SOLUTION

$$
\begin{aligned}
\cos ^{2} \theta_{x}+\cos ^{2} \theta_{y}+\cos ^{2} \theta_{z} & =1 \\
\cos ^{2} 65^{\circ}+\cos ^{2} 40^{\circ}+\cos ^{2} \theta_{z}^{\circ} & =1 \\
\cos \theta_{z} & = \pm 0.48432
\end{aligned}
$$

(b) Since $F_{z}>0$, we choose $\cos \theta_{z}=0.48432$, or $\theta_{z}=61.032^{\circ}$ $\therefore \quad \theta_{z}=61.0^{\circ}$
(a)

$$
F=1200 \mathrm{~N}
$$

$$
\begin{array}{ll}
F_{x}=F \cos \theta_{x}=(1200 \mathrm{~N}) \cos 65^{\circ} & F_{x}=507 \mathrm{~N} \\
F_{y}=F \cos \theta_{y}=(1200 \mathrm{~N}) \cos 40^{\circ} & F_{y}=919 \mathrm{~N} \\
F_{z}=F \cos \theta_{z}=(1200 \mathrm{~N}) \cos 61.032^{\circ} & F_{z}=582 \mathrm{~N}
\end{array}
$$

SOLUTION

$$
\begin{aligned}
\overrightarrow{D B} & =(480 \mathrm{~mm}) \mathbf{i}-(510 \mathrm{~mm}) \mathbf{j}+(320 \mathrm{~mm}) \mathbf{k} \\
D B & =\sqrt{(480 \mathrm{~mm})^{2}+\left(510 \mathrm{~mm}^{2}\right)+(320 \mathrm{~mm})^{2}} \\
& =770 \mathrm{~mm} \\
\mathbf{F} & =F \boldsymbol{\lambda}_{D B} \\
& =F \frac{\overrightarrow{D B}}{D B} \\
& =\frac{385 \mathrm{~N}}{770 \mathrm{~mm}}[(480 \mathrm{~mm}) \mathbf{i}-(510 \mathrm{~mm}) \mathbf{j}+(320 \mathrm{~mm}) \mathbf{k}] \\
& =(240 \mathrm{~N}) \mathbf{i}-(255 \mathrm{~N}) \mathbf{j}+(160 \mathrm{~N}) \mathbf{k} \\
& F_{x}=+240 \mathrm{~N}, \quad F_{y}=-255 \mathrm{~N}, \quad F_{z}=+160.0 \mathrm{~N}
\end{aligned}
$$

SOLUTION

$$
\begin{aligned}
\overrightarrow{E B} & =(270 \mathrm{~mm}) \mathbf{i}-(400 \mathrm{~mm}) \mathbf{j}+(600 \mathrm{~mm}) \mathbf{k} \\
E B & =\sqrt{(270 \mathrm{~mm})^{2}+(400 \mathrm{~mm})^{2}+(600 \mathrm{~mm})^{2}} \\
& =770 \mathrm{~mm} \\
\mathbf{F} & =F \lambda_{E B} \\
& =F \frac{\overrightarrow{E B}}{E B} \\
& =\frac{385 \mathrm{~N}}{770 \mathrm{~mm}}[(270 \mathrm{~mm}) \mathbf{i}-(400 \mathrm{~mm}) \mathbf{j}+(600 \mathrm{~mm}) \mathbf{k}] \\
\mathbf{F} & =(135 \mathrm{~N}) \mathbf{i}-(200 \mathrm{~N}) \mathbf{j}+(300 \mathrm{~N}) \mathbf{k} \\
& F_{x}=+135.0 \mathrm{~N}, \quad F_{y}=-200 \mathrm{~N}, \quad F_{z}=+300 \mathrm{~N}
\end{aligned}
$$

SOLUTION

$$
\Delta B=74.216 \mathrm{ft} \quad A C=85.590 \mathrm{ft}
$$

Cable $A B$:

$$
\begin{aligned}
& \lambda_{A B}=\frac{\overrightarrow{A B}}{A B}=\frac{(-46.765 \mathrm{ft}) \mathbf{i}+(45 \mathrm{ft}) \mathbf{j}+(36 \mathrm{ft}) \mathbf{k}}{74.216 \mathrm{ft}} \\
& \mathbf{T}_{A B}=T_{A B} \lambda_{A B}=\frac{-46.765 \mathbf{i}+45 \mathbf{j}+36 \mathbf{k}}{74.216}
\end{aligned}
$$

$$
\left(T_{A B}\right)_{x}=-1.260 \mathrm{kips}
$$

$$
\left(T_{A B}\right)_{y}=+1.213 \mathrm{kips}
$$

$$
\left(T_{A B}\right)_{z}=+0.970 \mathrm{kips}
$$

SOLUTION

Cable $A B$:

$$
\begin{aligned}
& \lambda_{A C}=\frac{\overrightarrow{A C}}{A C}=\frac{(-46.765 \mathrm{ft}) \mathbf{i}+(55.8 \mathrm{ft}) \mathbf{j}+(-45 \mathrm{ft}) \mathbf{k}}{85.590 \mathrm{ft}} \\
& \mathbf{T}_{A C}=T_{A C} \boldsymbol{\lambda}_{A C}=(1.5 \mathrm{kips}) \frac{-46.765 \mathbf{i}+55.8 \mathbf{j}-45 \mathbf{k}}{85.590}
\end{aligned}
$$

$$
\left(T_{A C}\right)_{x}=-0.820 \mathrm{kips}
$$

$$
\left(T_{A C}\right)_{y}=+0.978 \mathrm{kips}
$$

$$
\left(T_{A C}\right)_{z}=-0.789 \mathrm{kips}
$$

PROBLEM 2.89

A rectangular plate is supported by three cables as shown. Knowing that the tension in cable $A B$ is 408 N , determine the components of the force exerted on the plate at B.

SOLUTION

We have:

$$
\overrightarrow{B A}=+(320 \mathrm{~mm}) \mathbf{i}+(480 \mathrm{~mm}) \mathbf{j}-(360 \mathrm{~mm}) \mathbf{k} \quad B A=680 \mathrm{~mm}
$$

Thus:

$$
\begin{gathered}
\mathrm{F}_{B}=T_{B A} \lambda_{B A}=T_{B A} \frac{\overrightarrow{B A}}{B A}=T_{B A}\left(\frac{8}{17} \mathbf{i}+\frac{12}{17} \mathbf{j}-\frac{9}{17} \mathbf{k}\right) \\
\left(\frac{8}{17} T_{B A}\right) \mathbf{i}+\left(\frac{12}{17} T_{B A}\right) \mathbf{j}-\left(\frac{9}{17} T_{B A}\right) \mathbf{k}=0
\end{gathered}
$$

Setting $T_{B A}=408 \mathrm{~N}$ yields,

$$
F_{x}=+192.0 \mathrm{~N}, \quad F_{y}=+288 \mathrm{~N}, \quad F_{z}=-216 \mathrm{~N}
$$

SOLUTION

We have:

$$
\overrightarrow{D A}=-(250 \mathrm{~mm}) \mathbf{i}+(480 \mathrm{~mm}) \mathbf{j}+(360 \mathrm{~mm}) \mathbf{k} \quad D A=650 \mathrm{~mm}
$$

Thus:

$$
\begin{aligned}
\mathrm{F}_{D}= & T_{D A} \lambda_{D A}=T_{D A} \frac{\overrightarrow{D A}}{D A}=T_{D A}\left(-\frac{5}{13} \mathbf{i}+\frac{48}{65} \mathbf{j}+\frac{36}{65} \mathbf{k}\right) \\
& -\left(\frac{5}{13} T_{D A}\right) \mathbf{i}+\left(\frac{48}{65} T_{D A}\right) \mathbf{j}+\left(\frac{36}{65} T_{D A}\right) \mathbf{k}=0
\end{aligned}
$$

Setting $T_{D A}=429 \mathrm{~N}$ yields,

$$
F_{x}=-165.0 \mathrm{~N}, \quad F_{y}=+317 \mathrm{~N}, \quad F_{z}=+238 \mathrm{~N}
$$

SOLUTION

$$
\begin{array}{rlrl}
\mathbf{P} & =(300 \mathrm{~N})\left[-\cos 30^{\circ} \sin 15^{\circ} \mathbf{i}+\sin 30^{\circ} \mathbf{j}+\cos 30^{\circ} \cos 15^{\circ} \mathbf{k}\right] & \\
& =-(67.243 \mathrm{~N}) \mathbf{i}+(150 \mathrm{~N}) \mathbf{j}+(250.95 \mathrm{~N}) \mathbf{k} & \\
\mathbf{Q} & =(400 \mathrm{~N})\left[\cos 50^{\circ} \cos 20^{\circ} \mathbf{i}+\sin 50^{\circ} \mathbf{j}-\cos 50^{\circ} \sin 20^{\circ} \mathbf{k}\right] & & \\
& =(400 \mathrm{~N})[0.60402 \mathbf{i}+0.76604 \mathbf{j}-0.21985] & \\
& =(241.61 \mathrm{~N}) \mathbf{i}+(306.42 \mathrm{~N}) \mathbf{j}-(87.939 \mathrm{~N}) \mathbf{k} & & \\
\mathbf{R} & =\mathbf{P}+\mathbf{Q} & & R=515 \mathrm{~N} \\
& =(174.367 \mathrm{~N}) \mathbf{i}+(456.42 \mathrm{~N}) \mathbf{j}+(163.011 \mathrm{~N}) \mathbf{k} & \\
R & =\sqrt{(174.367 \mathrm{~N})^{2}+(456.42 \mathrm{~N})^{2}+(163.011 \mathrm{~N})^{2}} & \theta_{x}=70.2^{\circ} \\
& =515.07 \mathrm{~N} & & \theta_{y}=27.6^{\circ} \\
\cos \theta_{x} & =\frac{R_{x}}{R}=\frac{174.367 \mathrm{~N}}{515.07 \mathrm{~N}}=0.33853 & & \theta_{z}=71.5^{\circ} \\
\cos \theta_{y} & =\frac{R_{y}}{R}=\frac{456.42 \mathrm{~N}}{515.07 \mathrm{~N}}=0.88613 & & \\
\cos \theta_{z} & =\frac{R_{z}}{R}=\frac{163.011 \mathrm{~N}}{515.07 \mathrm{~N}}=0.31648 &
\end{array}
$$

SOLUTION

$$
\begin{array}{rlrl}
\mathbf{P} & =(400 \mathrm{~N})\left[-\cos 30^{\circ} \sin 15^{\circ} \mathbf{i}+\sin 30^{\circ} \mathbf{j}+\cos 30^{\circ} \cos 15^{\circ} \mathbf{k}\right] & & \\
& =-(89.678 \mathrm{~N}) \mathbf{i}+(200 \mathrm{~N}) \mathbf{j}+(334.61 \mathrm{~N}) \mathbf{k} & \\
\mathbf{Q} & =(300 \mathrm{~N})\left[\cos 50^{\circ} \cos 20^{\circ} \mathbf{i}+\sin 50^{\circ} \mathbf{j}-\cos 50^{\circ} \sin 20^{\circ} \mathbf{k}\right] & & \\
& =(181.21 \mathrm{~N}) \mathbf{i}+(229.81 \mathrm{~N}) \mathbf{j}-(65.954 \mathrm{~N}) \mathbf{k} & R & \mathbf{R} \\
& =\mathbf{P}+\mathbf{Q} & & \theta_{x}=79.8^{\circ} \\
& =(91.532 \mathrm{~N}) \mathbf{i}+(429.81 \mathrm{~N}) \mathbf{j}+(268.66 \mathrm{~N}) \mathbf{k} & \\
R & =\sqrt{(91.532 \mathrm{~N})^{2}+(429.81 \mathrm{~N})^{2}+(268.66 \mathrm{~N})^{2}} & \theta_{y}=33.4^{\circ} \\
& =515.07 \mathrm{~N} & \theta_{z}=58.6^{\circ} \\
\cos \theta_{x} & =\frac{R_{x}}{R}=\frac{91.532 \mathrm{~N}}{515.07 \mathrm{~N}}=0.177708 & & \\
\cos \theta_{y} & =\frac{R_{y}}{R}=\frac{429.81 \mathrm{~N}}{515.07 \mathrm{~N}}=0.83447 & & R_{z} \\
\cos \theta_{z} & =\frac{268.66 \mathrm{~N}}{R}=0.52160 & 515.07 \mathrm{~N} &
\end{array}
$$

PROBLEM 2.93

Knowing that the tension is 425 lb in cable $A B$ and 510 lb in cable $A C$, determine the magnitude and direction of the resultant of the forces exerted at A by the two cables.

SOLUTION

$$
\begin{aligned}
\overrightarrow{A B} & =(40 \mathrm{in} .) \mathbf{i}-(45 \mathrm{in} .) \mathbf{j}+(60 \mathrm{in} .) \mathbf{k} \\
A B & =\sqrt{(40 \mathrm{in} .)^{2}+(45 \mathrm{in} .)^{2}+(60 \mathrm{in} .)^{2}}=85 \mathrm{in} . \\
\overrightarrow{A C} & =(100 \mathrm{in} .) \mathbf{i}-(45 \mathrm{in} .) \mathbf{j}+(60 \mathrm{in} .) \mathbf{k} \\
A C & =\sqrt{(100 \mathrm{in} .)^{2}+(45 \mathrm{in} .)^{2}+(60 \mathrm{in} .)^{2}}=125 \mathrm{in} . \\
\mathbf{T}_{A B} & =T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B}=(425 \mathrm{lb})\left[\frac{(40 \mathrm{in} .) \mathbf{i}-(45 \mathrm{in} .) \mathbf{j}+(60 \mathrm{in} .) \mathbf{k}}{85 \mathrm{in} .}\right] \\
\mathbf{T}_{A B} & =(200 \mathrm{lb}) \mathbf{i}-(225 \mathrm{lb}) \mathbf{j}+(300 \mathrm{lb}) \mathbf{k} \\
\mathbf{T}_{A C} & =T_{A C} \lambda_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C}=(510 \mathrm{lb})\left[\frac{(100 \mathrm{in} .) \mathbf{i}-(45 \mathrm{in} .) \mathbf{j}+(60 \mathrm{in.}) \mathbf{k}}{125 \mathrm{in} .}\right] \\
\mathbf{T}_{A C} & =(408 \mathrm{lb}) \mathbf{i}-(183.6 \mathrm{lb}) \mathbf{j}+(244.8 \mathrm{lb}) \mathbf{k} \\
\mathbf{R} & =\mathbf{T}_{A B}+\mathbf{T}_{A C}=(608) \mathbf{i}-(408.6 \mathrm{lb}) \mathbf{j}+(544.8 \mathrm{lb}) \mathbf{k}
\end{aligned}
$$

Then:

$$
R=912.92 \mathrm{lb}
$$

$$
R=913 \mathrm{lb}
$$

and

$$
\begin{array}{ll}
\cos \theta_{x}=\frac{608 \mathrm{lb}}{912.92 \mathrm{lb}}=0.66599 & \theta_{x}=48.2^{\circ} \\
\cos \theta_{y}=\frac{408.6 \mathrm{lb}}{912.92 \mathrm{lb}}=-0.44757 & \theta_{y}=116.6^{\circ} \\
\cos \theta_{z}=\frac{544.8 \mathrm{lb}}{912.92 \mathrm{lb}}=0.59677 & \theta_{z}=53.4^{\circ}
\end{array}
$$

PROBLEM 2.94

Knowing that the tension is 510 lb in cable $A B$ and 425 lb in cable $A C$, determine the magnitude and direction of the resultant of the forces exerted at A by the two cables.

SOLUTION

$$
\begin{aligned}
\overrightarrow{A B} & =(40 \mathrm{in} .) \mathbf{i}-(45 \mathrm{in} .) \mathbf{j}+(60 \mathrm{in} .) \mathbf{k} \\
A B & =\sqrt{(40 \mathrm{in} .)^{2}+(45 \mathrm{in} .)^{2}+(60 \mathrm{in} .)^{2}}=85 \mathrm{in} . \\
\overrightarrow{A C} & =(100 \mathrm{in} .) \mathbf{i}-(45 \mathrm{in} .) \mathbf{j}+(60 \mathrm{in} .) \mathbf{k} \\
A C & =\sqrt{(100 \mathrm{in} .)^{2}+(45 \mathrm{in} .)^{2}+(60 \mathrm{in} .)^{2}}=125 \mathrm{in} . \\
\mathbf{T}_{A B} & =T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B}=(510 \mathrm{lb})\left[\frac{(40 \mathrm{in} .) \mathbf{i}-(45 \mathrm{in} .) \mathbf{j}+(60 \mathrm{in} .) \mathbf{k}}{85 \mathrm{in} .}\right] \\
\mathbf{T}_{A B} & =(240 \mathrm{lb}) \mathbf{i}-(270 \mathrm{lb}) \mathbf{j}+(360 \mathrm{lb}) \mathbf{k} \\
\mathbf{T}_{A C} & =T_{A C} \boldsymbol{\lambda}_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C}=(425 \mathrm{lb})\left[\frac{(100 \mathrm{in} .) \mathbf{i}-(45 \mathrm{in} .) \mathbf{j}+(60 \mathrm{in} .) \mathbf{k}}{125 \mathrm{in} .}\right] \\
\mathbf{T}_{A C} & =(340 \mathrm{lb}) \mathbf{i}-(153 \mathrm{lb}) \mathbf{j}+(204 \mathrm{lb}) \mathbf{k} \\
\mathbf{R} & =\mathbf{T}_{A B}+\mathbf{T}_{A C}=(580 \mathrm{lb}) \mathbf{i}-(423 \mathrm{lb}) \mathbf{j}+(564 \mathrm{lb}) \mathbf{k}
\end{aligned}
$$

Then:

$$
R=912.92 \mathrm{lb}
$$

$$
R=913 \mathrm{lb}
$$

and

$$
\cos \theta_{x}=\frac{580 \mathrm{lb}}{912.92 \mathrm{lb}}=0.63532
$$

$$
\theta_{x}=50.6^{\circ}
$$

$$
\cos \theta_{y}=\frac{-423 \mathrm{lb}}{912.92 \mathrm{lb}}=-0.46335
$$

$$
\theta_{y}=117.6^{\circ}
$$

$$
\cos \theta_{z}=\frac{564 \mathrm{lb}}{912.92 \mathrm{lb}}=0.61780
$$

$$
\theta_{z}=51.8^{\circ}
$$

PROBLEM 2.95

For the frame of Problem 2.85, determine the magnitude and direction of the resultant of the forces exerted by the cable at B knowing that the tension in the cable is 385 N .

PROBLEM 2.85 A frame $A B C$ is supported in part by cable $D B E$ that passes through a frictionless ring at B. Knowing that the tension in the cable is 385 N , determine the components of the force exerted by the cable on the support at D.

SOLUTION

$$
\begin{array}{rlrl}
\overrightarrow{B D} & =-(480 \mathrm{~mm}) \mathbf{i}+(510 \mathrm{~mm}) \mathbf{j}-(320 \mathrm{~mm}) \mathbf{k} \\
B D & =\sqrt{(480 \mathrm{~mm})^{2}+(510 \mathrm{~mm})^{2}+(320 \mathrm{~mm})^{2}}=770 \mathrm{~mm} \\
\mathbf{F}_{B D} & =T_{B D} \lambda_{B D}=T_{B D} \frac{\overrightarrow{B D}}{B D} \\
& =\frac{(385 \mathrm{~N})}{(770 \mathrm{~mm})}[-(480 \mathrm{~mm}) \mathbf{i}+(510 \mathrm{~mm}) \mathbf{j}-(320 \mathrm{~mm}) \mathbf{k}] & \\
& =-(240 \mathrm{~N}) \mathbf{i}+(255 \mathrm{~N}) \mathbf{j}-(160 \mathrm{~N}) \mathbf{k} \\
\overrightarrow{B E} & =-(270 \mathrm{~mm}) \mathbf{i}+(400 \mathrm{~mm}) \mathbf{j}-(600 \mathrm{~mm}) \mathbf{k} \\
B E & =\sqrt{(270 \mathrm{~mm})^{2}+(400 \mathrm{~mm})^{2}+(600 \mathrm{~mm})^{2}}=770 \mathrm{~mm} & \\
\mathbf{F}_{B E} & =T_{B E} \lambda_{B E}=T_{B E} \frac{\overrightarrow{B E}}{B E} & \\
& =\frac{(385 \mathrm{~N})}{(770 \mathrm{~mm})}[-(270 \mathrm{~mm}) \mathbf{i}+(400 \mathrm{~mm}) \mathbf{j}-(600 \mathrm{~mm}) \mathbf{k}] & \\
& =-(135 \mathrm{~N}) \mathbf{i}+(200 \mathrm{~N}) \mathbf{j}-(300 \mathrm{~N}) \mathbf{k} & \\
\mathbf{R} & =\mathbf{F}_{B D}+\mathbf{F}_{B E}=-(375 \mathrm{~N}) \mathbf{i}+(455 \mathrm{~N}) \mathbf{j}-(460 \mathrm{~N}) \mathbf{k} & \\
R & =\sqrt{(375 \mathrm{~N})^{2}+(455 \mathrm{~N})^{2}+(460 \mathrm{~N})^{2}}=747.83 \mathrm{~N} & R=748 \mathrm{~N} \\
\cos \theta_{x} & =\frac{-375 \mathrm{~N}}{747.83 \mathrm{~N}} & \theta_{x}=120.1^{\circ} \\
\cos \theta_{y} & =\frac{455 \mathrm{~N}}{747.83 \mathrm{~N}} & \theta_{y}=52.5^{\circ} \\
\cos \theta_{z} & =\frac{-460 \mathrm{~N}}{747.83 \mathrm{~N}} & \theta_{z}=128.0^{\circ}
\end{array}
$$

Dimensions in mm

PROBLEM 2.96

For the plate of Prob. 2.89, determine the tensions in cables $A B$ and $A D$ knowing that the tension in cable $A C$ is 54 N and that the resultant of the forces exerted by the three cables at A must be vertical.

SOLUTION

We have:

$$
\begin{array}{ll}
\overrightarrow{A B}=-(320 \mathrm{~mm}) \mathbf{i}-(480 \mathrm{~mm}) \mathbf{j}+(360 \mathrm{~mm}) \mathbf{k} & A B=680 \mathrm{~mm} \\
\overrightarrow{A C}=(450 \mathrm{~mm}) \mathbf{i}-(480 \mathrm{~mm}) \mathbf{j}+(360 \mathrm{~mm}) \mathbf{k} & A C=750 \mathrm{~mm} \\
\overrightarrow{A D}=(250 \mathrm{~mm}) \mathbf{i}-(480 \mathrm{~mm}) \mathbf{j}-(360 \mathrm{~mm}) \mathbf{k} & A D=650 \mathrm{~mm}
\end{array}
$$

Thus:

$$
\begin{aligned}
& \mathbf{T}_{A B}=T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B}=\frac{T_{A B}}{680}(-320 \mathbf{i}-480 \mathbf{j}+360 \mathbf{k}) \\
& \mathbf{T}_{A C}=T_{A C} \lambda_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C}=\frac{54}{750}(450 \mathbf{i}-480 \mathbf{j}+360 \mathbf{k}) \\
& \mathbf{T}_{A D}=T_{A D} \lambda_{A D}=T_{A D} \frac{\overrightarrow{A D}}{A D}=\frac{T_{A D}}{650}(250 \mathbf{i}-480 \mathbf{j}-360 \mathbf{k})
\end{aligned}
$$

Substituting into the Eq. $\mathbf{R}=\Sigma \mathbf{F}$ and factoring $\mathbf{i}, \mathbf{j}, \mathbf{k}$:

$$
\begin{aligned}
& \mathbf{R}=\left(-\frac{320}{680} T_{A B}+32.40+\frac{250}{650} T_{A D}\right) \mathbf{i} \\
& +\left(-\frac{480}{680} T_{A B}-34.560-\frac{480}{650} T_{A D}\right) \mathbf{j} \\
& +\left(\frac{360}{680} T_{A B}+25.920-\frac{360}{650} T_{A D}\right) \mathbf{k}
\end{aligned}
$$

PROBLEM 2.96 (Continued)

Since \mathbf{R} is vertical, the coefficients of \mathbf{i} and \mathbf{k} are zero:

$$
\begin{align*}
& \text { i: } \quad-\frac{320}{680} T_{A B}+32.40+\frac{250}{650} T_{A D}=0 \tag{1}\\
& \text { k: } \quad \tag{2}\\
& \quad \frac{360}{680} T_{A B}+25.920-\frac{360}{650} T_{A D}=0
\end{align*}
$$

Multiply (1) by 3.6 and (2) by 2.5 then add:

$$
\begin{aligned}
& -\frac{252}{680} T_{A B}+181.440=0 \\
& T_{A B}=489.60 \mathrm{~N}
\end{aligned}
$$

$$
T_{A B}=490 \mathrm{~N}
$$

Substitute into (2) and solve for $T_{A D}$:

$$
\begin{aligned}
\frac{360}{680}(489.60 \mathrm{~N})+25.920-\frac{360}{650} T_{A D} & =0 \\
T_{A D} & =514.80 \mathrm{~N}
\end{aligned}
$$

$$
T_{A D}=515 \mathrm{~N}
$$

PROBLEM 2.97

The boom $O A$ carries a load \mathbf{P} and is supported by two cables as shown. Knowing that the tension in cable $A B$ is 183 lb and that the resultant of the load \mathbf{P} and of the forces exerted at A by the two cables must be directed along $O A$, determine the tension in cable $A C$.

SOLUTION

Cable $A B: \quad T_{A B}=183 \mathrm{lb}$

$$
\begin{aligned}
& \mathbf{T}_{A B}=T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B}=(183 \mathrm{lb}) \frac{(-48 \mathrm{in} .) \mathbf{i}+(29 \mathrm{in} .) \mathbf{j}+(24 \mathrm{in} .) \mathbf{k}}{61 \mathrm{in} .} \\
& \mathbf{T}_{A B}=-(144 \mathrm{lb}) \mathbf{i}+(87 \mathrm{lb}) \mathbf{j}+(72 \mathrm{lb}) \mathbf{k}
\end{aligned}
$$

Cable $A C$:

$$
\begin{aligned}
& \mathbf{T}_{A C}=T_{A C} \lambda_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C}=T_{A C} \frac{(-48 \mathrm{in} .) \mathbf{i}+(25 \mathrm{in} .) \mathbf{j}+(-36 \mathrm{in} .) \mathbf{k}}{65 \mathrm{in} .} \\
& \mathbf{T}_{A C}=-\frac{48}{65} T_{A C} \mathbf{i}+\frac{25}{65} T_{A C} \mathbf{j}-\frac{36}{65} T_{A C} \mathbf{k}
\end{aligned}
$$

Load P :

$$
\mathbf{P}=P \mathbf{j}
$$

For resultant to be directed along $O A$, i.e., x-axis

$$
R_{z}=0: \quad \Sigma F_{z}=(72 \mathrm{lb})-\frac{36}{65} T_{A C}^{\prime}=0 \quad T_{A C}=130.0 \mathrm{lb}
$$

SOLUTION

See Problem 2.97. Since resultant must be directed along $O A$, i.e., the x-axis, we write

$$
R_{y}=0: \quad \Sigma F_{y}=(87 \mathrm{lb})+\frac{25}{65} T_{A C}-P=0
$$

$T_{A C}=130.0 \mathrm{lb}$ from Problem 2.97.

Then

$$
(87 \mathrm{lb})+\frac{25}{65}(130.0 \mathrm{lb})-P=0
$$

$$
P=137.0 \mathrm{lb}
$$

PROBLEM 2.99

A container is supported by three cables that are attached to a ceiling as shown. Determine the weight W of the container, knowing that the tension in cable $A B$ is 6 kN .

SOLUTION

Free-Body Diagram at A:

The forces applied at A are:

$$
\mathbf{T}_{A B}, \mathbf{T}_{A C}, \mathbf{T}_{A D}, \text { and } \mathbf{W}
$$

where $\mathbf{W}=W \mathbf{j}$. To express the other forces in terms of the unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$, we write

$$
\begin{array}{ll}
\overrightarrow{A B}=-(450 \mathrm{~mm}) \mathbf{i}+(600 \mathrm{~mm}) \mathbf{j} & A B=750 \mathrm{~mm} \\
\overrightarrow{A C}=+(600 \mathrm{~mm}) \mathbf{j}-(320 \mathrm{~mm}) \mathbf{k} & A C=680 \mathrm{~mm} \\
\overrightarrow{A D}=+(500 \mathrm{~mm}) \mathbf{i}+(600 \mathrm{~mm}) \mathbf{j}+(360 \mathrm{~mm}) \mathbf{k} & A D=860 \mathrm{~mm}
\end{array}
$$

$$
\mathbf{T}_{A B}=\lambda_{A B} T_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B}=T_{A B} \frac{(-450 \mathrm{~mm}) \mathbf{i}+(600 \mathrm{~mm}) \mathbf{j}}{750 \mathrm{~mm}}
$$

$$
=\left(-\frac{45}{75} \mathbf{i}+\frac{60}{75} \mathbf{j}\right) T_{A B}
$$

$$
\mathbf{T}_{A C}=\lambda_{A C} T_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C}=T_{A C} \frac{(600 \mathrm{~mm}) \mathbf{i}-(320 \mathrm{~mm}) \mathbf{j}}{680 \mathrm{~mm}}
$$

$$
=\left(\frac{60}{68} \mathbf{j}-\frac{32}{68} \mathbf{k}\right) T_{A C}
$$

$$
\mathbf{T}_{A D}=\lambda_{A D} T_{A D}=T_{A D} \frac{\overrightarrow{A D}}{A D}=T_{A D} \frac{(500 \mathrm{~mm}) \mathbf{i}+(600 \mathrm{~mm}) \mathbf{j}+(360 \mathrm{~mm}) \mathbf{k}}{860 \mathrm{~mm}}
$$

$$
=\left(\frac{50}{86} \mathbf{i}+\frac{60}{86} \mathbf{j}+\frac{36}{86} \mathbf{k}\right) T_{A D}
$$

PROBLEM 2.99 (Continued)

Equilibrium condition: $\quad \Sigma F=0: \therefore \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}+\mathbf{W}=0$
Substituting the expressions obtained for $\mathbf{T}_{A B}, \mathbf{T}_{A C}$, and $\mathbf{T}_{A D}$; factoring \mathbf{i}, \mathbf{j}, and \mathbf{k}; and equating each of the coefficients to zero gives the following equations:

From i:

$$
\begin{equation*}
-\frac{45}{75} T_{A B}+\frac{50}{86} T_{A D}=0 \tag{1}
\end{equation*}
$$

From $\mathbf{j}: \quad \frac{60}{75} T_{A B}+\frac{60}{68} T_{A C}+\frac{60}{86} T_{A D}-W=0$

From \mathbf{k} :

$$
-\frac{32}{68} T_{A C}+\frac{36}{86} T_{A D}=0
$$

Setting $T_{A B}=6 \mathrm{kN}$ in (1) and (2), and solving the resulting set of equations gives

$$
\begin{aligned}
& T_{A C}=6.1920 \mathrm{kN} \\
& T_{A C}=5.5080 \mathrm{kN} \quad W=13.98 \mathrm{kN}
\end{aligned}
$$

PROBLEM 2.100

A container is supported by three cables that are attached to a ceiling as shown. Determine the weight W of the container, knowing that the tension in cable $A D$ is 4.3 kN .

SOLUTION

See Problem 2.99 for the figure and analysis leading to the following set of linear algebraic equations:

$$
\begin{align*}
-\frac{45}{75} T_{A B}+\frac{50}{86} T_{A D} & =0 \tag{1}\\
\frac{60}{75} T_{A B}+\frac{60}{68} T_{A C}+\frac{60}{86} T_{A D}-W & =0 \tag{2}\\
-\frac{32}{68} T_{A C}+\frac{36}{86} T_{A D} & =0 \tag{3}
\end{align*}
$$

Setting $T_{A D}=4.3 \mathrm{kN}$ into the above equations gives

$$
\begin{aligned}
T_{A B} & =4.1667 \mathrm{kN} \\
T_{A C} & =3.8250 \mathrm{kN}
\end{aligned}
$$

$$
W=9.71 \mathrm{kN}
$$

SOLUTION

FREE-BODY DIAGRAM AT \boldsymbol{A}

The forces applied at A are:

$$
\mathbf{T}_{A B}, \mathbf{T}_{A C}, \mathbf{T}_{A D}, \text { and } \mathbf{P}
$$

where $\mathbf{P}=P \mathbf{j}$. To express the other forces in terms of the unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$, we write

$$
\begin{array}{lc}
\overrightarrow{A B}=-(4.20 \mathrm{~m}) \mathbf{i}-(5.60 \mathrm{~m}) \mathbf{j} & A B=7.00 \mathrm{~m} \\
\overrightarrow{A C}=(2.40 \mathrm{~m}) \mathbf{i}-(5.60 \mathrm{~m}) \mathbf{j}+(4.20 \mathrm{~m}) \mathbf{k} & A C=7.40 \mathrm{~m} \\
\overrightarrow{A D}=-(5.60 \mathrm{~m}) \mathbf{j}-(3.30 \mathrm{~m}) \mathbf{k} & A D=6.50 \mathrm{~m}
\end{array}
$$

and

$$
\begin{aligned}
& \mathbf{T}_{A B}=T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{\frac{A B}{A}}=(-0.6 \mathbf{i}-0.8 \mathbf{j}) T_{A B} \\
& \mathbf{T}_{A C}=T_{A C} \lambda_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C}=(0.32432 \mathbf{i}-0.75676 \mathbf{j}+0.56757 \mathbf{k}) T_{A C} \\
& \mathbf{T}_{A D}=T_{A D} \lambda_{A D}=T_{A D} \frac{\overrightarrow{A D}}{A D}=(-0.86154 \mathbf{j}-0.50769 \mathbf{k}) T_{A D}
\end{aligned}
$$

PROBLEM 2.101 (Continued)

Equilibrium condition:

$$
\Sigma F=0: \quad \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}+P \mathbf{j}=0
$$

Substituting the expressions obtained for $\mathbf{T}_{A B}, \mathbf{T}_{A C}$, and $\mathbf{T}_{A D}$ and factoring \mathbf{i}, \mathbf{j}, and \mathbf{k} :

$$
\begin{gathered}
\left(-0.6 T_{A B}+0.32432 T_{A C}\right) \mathbf{i}+\left(-0.8 T_{A B}-0.75676 T_{A C}-0.86154 T_{A D}+P\right) \mathbf{j} \\
+\left(0.56757 T_{A C}-0.50769 T_{A D}\right) \mathbf{k}=0
\end{gathered}
$$

Equating to zero the coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$:

$$
\begin{align*}
-0.6 T_{A B}+0.32432 T_{A C} & =0 \tag{1}\\
-0.8 T_{A B}-0.75676 T_{A C}-0.86154 T_{A D}+P & =0 \tag{2}\\
0.56757 T_{A C}-0.50769 T_{A D} & =0 \tag{3}
\end{align*}
$$

Setting $T_{A D}=481 \mathrm{~N}$ in (2) and (3), and solving the resulting set of equations gives

$$
\begin{array}{ll}
T_{A C}=430.26 \mathrm{~N} & \\
T_{A D}=232.57 \mathrm{~N} & \mathbf{P}=926 \mathrm{~N} \uparrow
\end{array}
$$

PROBLEM 2.102

Three cables are used to tether a balloon as shown. Knowing that the balloon exerts an $800-\mathrm{N}$ vertical force at A, determine the tension in each cable.

SOLUTION

See Problem 2.101 for the figure and analysis leading to the linear algebraic Equations (1), (2), and (3).

$$
\begin{array}{r}
-0.6 T_{A B}+0.32432 T_{A C}=0 \\
-0.8 T_{A B}-0.75676 T_{A C}-0.86154 T_{A D}+P=0 \\
0.56757 T_{A C}-0.50769 T_{A D}=0 \tag{3}
\end{array}
$$

From Eq. (1):

$$
T_{A B}=0.54053 T_{A C}
$$

From Eq. (3):

$$
T_{A D}=1.11795 T_{A C}
$$

Substituting for $T_{A B}$ and $T_{A D}$ in terms of $T_{A C}$ into Eq. (2) gives

$$
\begin{aligned}
&-0.8\left(0.54053 T_{A C}\right)-0.75676 T_{A C}-0.86154\left(1.11795 T_{A C}\right)+P=0 \\
& 2.1523 T_{A C}=P ; \quad P=800 \mathrm{~N} \\
& T_{A C}=\frac{800 \mathrm{~N}}{2.1523} \\
&=371.69 \mathrm{~N}
\end{aligned}
$$

Substituting into expressions for $T_{A B}$ and $T_{A D}$ gives

$$
\begin{aligned}
& T_{A B}=0.54053(371.69 \mathrm{~N}) \\
& T_{A D}=1.11795(371.69 \mathrm{~N})
\end{aligned}
$$

$$
T_{A B}=201 \mathrm{~N}, \quad T_{A C}=372 \mathrm{~N}, \quad T_{A D}=416 \mathrm{~N}
$$

SOLUTION

By Symmetry $T_{D B}=T_{D C}$

Free-Body Diagram of Point D :

The forces applied at D are:

$$
\mathbf{T}_{D B}, \mathbf{T}_{D C}, \mathbf{T}_{D A}, \text { and } \mathbf{P}
$$

where $\mathbf{P}=P \mathbf{j}=(36 \mathrm{lb}) \mathbf{j}$. To express the other forces in terms of the unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$, we write
and

$$
\begin{array}{ll}
\overrightarrow{D A}=(16 \mathrm{in}) \mathbf{i}-(24 \mathrm{in} .) \mathbf{j} & D A=28.844 \mathrm{in} . \\
\overrightarrow{D B}=-(8 \mathrm{in} .) \mathbf{i}-(24 \mathrm{in} .) \mathbf{j}+(6 \mathrm{in} .) \mathbf{k} & D B=26.0 \mathrm{in} . \\
\overrightarrow{D C}=-(8 \mathrm{in} .) \mathbf{i}-(24 \mathrm{in} .) \mathbf{j}-(6 \mathrm{in} .) \mathbf{k} & D C=26.0 \mathrm{in} . \\
\mathbf{T}_{D A}=T_{D A} \lambda_{D A}=T_{D A} \frac{\overrightarrow{D A}}{D A}=(0.55471 \mathbf{i}-0.83206 \mathbf{j}) T_{D A} \\
\mathbf{T}_{D B}=T_{D B} \lambda_{D B}=T_{D B} \frac{\overrightarrow{D B}}{D B}=(-0.30769 \mathbf{i}-0.92308 \mathbf{j}+0.23077 \mathbf{k}) T_{D B} \\
\mathbf{T}_{D C}=T_{D C} \lambda_{D C}=T_{D C} \frac{\overrightarrow{D C}}{D C}=(-0.30769 \mathbf{i}-0.92308 \mathbf{j}-0.23077 \mathbf{k}) T_{D C}
\end{array}
$$

PROBLEM 2.103 (Continued)

Equilibrium condition: $\quad \Sigma F=0: \quad \mathbf{T}_{D A}+\mathbf{T}_{D B}+\mathbf{T}_{D C}+(36 \mathrm{lb}) \mathbf{j}=0$
Substituting the expressions obtained for $\mathbf{T}_{D A}, \mathbf{T}_{D B}$, and $\mathbf{T}_{D C}$ and factoring \mathbf{i}, \mathbf{j}, and \mathbf{k} :

$$
\begin{gathered}
\left(0.55471 T_{D A}-0.30769 T_{D B}-0.30769 T_{D C}\right) \mathbf{i}+\left(-0.83206 T_{D A}-0.92308 T_{D B}-0.92308 T_{D C}+36 \mathrm{lb}\right) \mathbf{j} \\
+ \\
+\left(0.23077 T_{D B}-0.23077 T_{D C}\right) \mathbf{k}=0
\end{gathered}
$$

Equating to zero the coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$:

$$
\begin{array}{r}
0.55471 T_{D A}-0.30769 T_{D B}-0.30769 T_{D C}=0 \\
-0.83206 T_{D A}-0.92308 T_{D B}-0.92308 T_{D C}+36 \mathrm{lb}=0 \\
0.23077 T_{D B}-0.23077 T_{D C}=0 \tag{3}
\end{array}
$$

Equation (3) confirms that $T_{D B}=T_{D C}$. Solving simultaneously gives,

$$
T_{D A}=14.42 \mathrm{lb} ; \quad T_{D B}=T_{D C}=13.00 \mathrm{lb}
$$

PROBLEM 2.104

Solve Prob. 2.103, assuming that $a=8$ in.
PROBLEM 2.103 A 36-lb triangular plate is supported by three wires as shown. Determine the tension in each wire, knowing that $a=6 \mathrm{in}$.

SOLUTION

By Symmetry $T_{D B}=T_{D C}$

Free-Body Diagram of Point D :

The forces applied at D are:

$$
\mathbf{T}_{D B}, \mathbf{T}_{D C}, \mathbf{T}_{D A} \text {, and } \mathbf{P}
$$

where $\mathbf{P}=P \mathbf{j}=(36 \mathrm{lb}) \mathbf{j}$. To express the other forces in terms of the unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$, we write

$$
\begin{array}{ll}
\overrightarrow{D A}=(16 \mathrm{in} .) \mathbf{i}-(24 \mathrm{in} .) \mathbf{j} & D A=28.844 \mathrm{in} . \\
\overrightarrow{D B}=-(8 \mathrm{in} .) \mathbf{i}-(24 \mathrm{in} .) \mathbf{j}+(8 \mathrm{in}) \mathbf{k} & D B=26.533 \mathrm{in} . \\
\overrightarrow{D C}=-(8 \mathrm{in} .) \mathbf{i}-(24 \mathrm{in} .) \mathbf{j}-(8 \mathrm{in} .) \mathbf{k} & D C=26.533 \mathrm{in} .
\end{array}
$$

and

$$
\begin{aligned}
& \mathbf{T}_{D A}=T_{D A} \boldsymbol{\lambda}_{D A}=T_{D A} \frac{\overrightarrow{D A}}{D A}=(0.55471 \mathbf{i}-0.83206 \mathbf{j}) T_{D A} \\
& \mathbf{T}_{D B}=T_{D B} \lambda_{D B}=T_{D B} \frac{\overrightarrow{D B}}{\frac{D B}{D}}=(-0.30151 \mathbf{i}-0.90453 \mathbf{j}+0.30151 \mathbf{k}) T_{D B} \\
& \mathbf{T}_{D C}=T_{D C} \boldsymbol{\lambda}_{D C}=T_{D C} \frac{\overrightarrow{D C}}{D C}=(-0.30151 \mathbf{i}-0.90453 \mathbf{j}-0.30151 \mathbf{k}) T_{D C}
\end{aligned}
$$

PROBLEM 2.104 (Continued)

Equilibrium condition: $\quad \quad \Sigma F=0: \quad \mathbf{T}_{D A}+\mathbf{T}_{D B}+\mathbf{T}_{D C}+(36 \mathrm{lb}) \mathbf{j}=0$
Substituting the expressions obtained for $\mathbf{T}_{D A}, \mathbf{T}_{D B}$, and $\mathbf{T}_{D C}$ and factoring \mathbf{i}, \mathbf{j}, and \mathbf{k} :

$$
\begin{gathered}
\left(0.55471 T_{D A}-0.30151 T_{D B}-0.30151 T_{D C}\right) \mathbf{i}+\left(-0.83206 T_{D A}-0.90453 T_{D B}-0.90453 T_{D C}+36 \mathrm{lb}\right) \mathbf{j} \\
+\left(0.30151 T_{D B}-0.30151 T_{D C}\right) \mathbf{k}=0
\end{gathered}
$$

Equating to zero the coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$:

$$
\begin{array}{r}
0.55471 T_{D A}-0.30151 T_{D B}-0.30151 T_{D C}=0 \\
-0.83206 T_{D A}-0.90453 T_{D B}-0.90453 T_{D C}+36 \mathrm{lb}=0 \\
0.30151 T_{D B}-0.30151 T_{D C}=0 \tag{3}
\end{array}
$$

Equation (3) confirms that $T_{D B}=T_{D C}$. Solving simultaneously gives,

$$
T_{D A}=14.42 \mathrm{lb} ; \quad T_{D B}=T_{D C}=13.27 \mathrm{lb}
$$

PROBLEM 2.105

A crate is supported by three cables as shown. Determine the weight of the crate knowing that the tension in cable $A C$ is 544 lb .

Solution The forces applied at A are:

$$
\mathbf{T}_{A B}, \mathbf{T}_{A C}, \mathbf{T}_{A D} \text { and } \mathbf{W}
$$

where $\mathbf{P}=P \mathbf{j}$. To express the other forces in terms of the unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$, we write

$$
\begin{aligned}
& \overrightarrow{A B}=-(36 \mathrm{in} .) \mathbf{i}+(60 \mathrm{in} .) \mathbf{j}-(27 \mathrm{in} .) \mathbf{k} \\
& A B=75 \mathrm{in} . \\
& \overrightarrow{A C}=(60 \mathrm{in} .) \mathbf{j}+(32 \mathrm{in} .) \mathbf{k} \\
& A C=68 \mathrm{in} . \\
& \overrightarrow{A D}=(40 \mathrm{in} .) \mathbf{i}+(60 \mathrm{in} .) \mathbf{j}-(27 \mathrm{in} .) \mathbf{k} \\
& A D=77 \mathrm{in} .
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{T}_{A B} & =T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B} \\
& =(-0.48 \mathbf{i}+0.8 \mathbf{j}-0.36 \mathbf{k}) T_{A B} \\
\mathbf{T}_{A C} & =T_{A C} \lambda_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C} \\
& =(0.88235 \mathbf{j}+0.47059 \mathbf{k}) T_{A C} \\
\mathbf{T}_{A D} & =T_{A D} \lambda_{A D}=T_{A D} \frac{\overrightarrow{A D}}{A D} \\
& =(0.51948 \mathbf{i}+0.77922 \mathbf{j}-0.35065 \mathbf{k}) T_{A D}
\end{aligned}
$$

$$
\mathbf{W}=-W \mathbf{j}
$$

$$
\Sigma F=0: \quad \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}-W \mathbf{j}=0
$$

PROBLEM 2.105 (Continued)

Substituting the expressions obtained for $\mathbf{T}_{A B}, \mathbf{T}_{A C}$, and $\mathbf{T}_{A D}$ and factoring \mathbf{i}, \mathbf{j}, and \mathbf{k} :

$$
\begin{aligned}
\left(-0.48 T_{A B}\right. & \left.+0.51948 T_{A D}\right) \mathbf{i}+\left(0.8 T_{A B}+0.88235 T_{A C}+0.77922 T_{A D}-W\right) \mathbf{j} \\
& +\left(-0.36 T_{A B}+0.47059 T_{A C}-0.35065 T_{A D}\right) \mathbf{k}=0
\end{aligned}
$$

Equating to zero the coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$:

$$
\begin{align*}
-0.48 T_{A B}+0.51948 T_{A D} & =0 \tag{1}\\
0.8 T_{A B}+0.88235 T_{A C}+0.77922 T_{A D}-W & =0 \tag{2}\\
-0.36 T_{A B}+0.47059 T_{A C}-0.35065 T_{A D} & =0 \tag{3}
\end{align*}
$$

Substituting $T_{A C}=544 \mathrm{lb}$ in Equations (1), (2), and (3) above, and solving the resulting set of equations using conventional algorithms, gives:

$$
\begin{aligned}
& T_{A B}=374.27 \mathrm{lb} \\
& T_{A D}=345.82 \mathrm{lb}
\end{aligned} \quad W=1049 \mathrm{lb}
$$

PROBLEM 2.106

A $1600-1 \mathrm{lb}$ crate is supported by three cables as shown. Determine the tension in each cable.

SOLUTION

The forces applied at A are:

$$
\mathbf{T}_{A B}, \mathbf{T}_{A C}, \mathbf{T}_{A D} \text { and } \mathbf{W}
$$

where $\mathbf{P}=P \mathbf{j}$. To express the other forces in terms of the unit vectors \mathbf{i}, \mathbf{j}, \mathbf{k}, we write

$$
\begin{aligned}
& \overrightarrow{A B}=-(36 \mathrm{in}) \mathbf{i}+(60 \mathrm{in} .) \mathbf{j}-(27 \mathrm{in} .) \mathbf{k} \\
& A B=75 \mathrm{in} . \\
& \overrightarrow{A C}=(60 \mathrm{in} .) \mathbf{j}+(32 \mathrm{in} .) \mathbf{k} \\
& A C=68 \mathrm{in} . \\
& \overrightarrow{A D}=(40 \mathrm{in}) \mathbf{i}+(60 \mathrm{in} .) \mathbf{j}-(27 \mathrm{in} .) \mathbf{k} \\
& A D=77 \mathrm{in} .
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{T}_{A B} & =T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B} \\
& =(-0.48 \mathbf{i}+0.8 \mathbf{j}-0.36 \mathbf{k}) T_{A B} \\
\mathbf{T}_{A C} & =T_{A C} \lambda_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C} \\
& =(0.88235 \mathbf{j}+0.47059 \mathbf{k}) T_{A C} \\
\mathbf{T}_{A D} & =T_{A D} \lambda_{A D}=T_{A D} \frac{\overrightarrow{A D}}{A D} \\
& =(0.51948 \mathbf{i}+0.77922 \mathbf{j}-0.35065 \mathbf{k}) T_{A D}
\end{aligned}
$$

$$
\mathbf{V}=-W \mathbf{j}
$$

$$
\Sigma F=0: \quad \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}-W \mathbf{j}=0
$$

PROBLEM 2.106 (Continued)

Substituting the expressions obtained for $\mathbf{T}_{A B}, \mathbf{T}_{A C}$, and $\mathbf{T}_{A D}$ and factoring \mathbf{i}, \mathbf{j}, and \mathbf{k} :

$$
\begin{aligned}
\left(-0.48 T_{A B}+\right. & \left.0.51948 T_{A D}\right) \mathbf{i}+\left(0.8 T_{A B}+0.88235 T_{A C}+0.77922 T_{A D}-W\right) \mathbf{j} \\
& +\left(-0.36 T_{A B}+0.47059 T_{A C}-0.35065 T_{A D}\right) \mathbf{k}=0
\end{aligned}
$$

Equating to zero the coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$:

$$
\begin{align*}
-0.48 T_{A B}+0.51948 T_{A D} & =0 \tag{1}\\
0.8 T_{A B}+0.88235 T_{A C}+0.77922 T_{A D}-W & =0 \tag{2}\\
-0.36 T_{A B}+0.47059 T_{A C}-0.35065 T_{A D} & =0 \tag{3}
\end{align*}
$$

Substituting $W=1600 \mathrm{lb}$ in Equations (1), (2), and (3) above, and solving the resulting set of equations using conventional algorithms gives,

$$
\begin{aligned}
T_{A B} & =571 \mathrm{lb} \\
T_{A C} & =830 \mathrm{lb} \\
T_{A D} & =528 \mathrm{lb}
\end{aligned}
$$

SOLUTION

$$
\begin{aligned}
& \Sigma \mathbf{F}_{A}=0: \quad \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}+\mathbf{P}=0 \quad \text { where } \quad \mathbf{P}=P \mathbf{i} \\
& \overrightarrow{A B}=-(960 \mathrm{~mm}) \mathbf{i}-(240 \mathrm{~mm}) \mathbf{j}+(380 \mathrm{~mm}) \mathbf{k} \quad A B=1060 \mathrm{~mm} \\
& \overrightarrow{A C}
\end{aligned}=-(960 \mathrm{~mm}) \mathbf{i}-(240 \mathrm{~mm}) \mathbf{j}-(320 \mathrm{~mm}) \mathbf{k} \quad A C=1040 \mathrm{~mm}, ~ \begin{aligned}
& \overrightarrow{A D}=-(960 \mathrm{~mm}) \mathbf{i}+(720 \mathrm{~mm}) \mathbf{j}-(220 \mathrm{~mm}) \mathbf{k} \quad A D=1220 \mathrm{~mm} \\
& \mathbf{T}_{A B}=T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B}=T_{A B}\left(-\frac{48}{53} \mathbf{i}-\frac{12}{53} \mathbf{j}+\frac{19}{53} \mathbf{k}\right) \\
& \mathbf{T}_{A C}=T_{A C} \lambda_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C}=T_{A C}\left(-\frac{12}{13} \mathbf{i}-\frac{3}{13} \mathbf{j}-\frac{4}{13} \mathbf{k}\right) \\
& \mathbf{T}_{A D}=T_{A D} \lambda_{A D}=\frac{305 \mathrm{~N}}{1220 \mathrm{~mm}}[(-960 \mathrm{~mm}) \mathbf{i}+(720 \mathrm{~mm}) \mathbf{j}-(220 \mathrm{~mm}) \mathbf{k}] \\
&=-(240 \mathrm{~N}) \mathbf{i}+(180 \mathrm{~N}) \mathbf{j}-(55 \mathrm{~N}) \mathbf{k}
\end{aligned}
$$

Substituting into $\Sigma \mathbf{F}_{A}=0$, factoring $\mathbf{i}, \mathbf{j}, \mathbf{k}$, and setting each coefficient equal to ϕ gives:

$$
\begin{align*}
& \mathbf{i}: \quad P=\frac{48}{53} T_{A B}+\frac{12}{13} T_{A C}+240 \mathrm{~N} \tag{1}\\
& \mathbf{j}: \quad \frac{12}{53} T_{A B}+\frac{3}{13} T_{A C}=180 \mathrm{~N} \tag{2}\\
& \text { k: } \quad \frac{19}{53} T_{A B}-\frac{4}{13} T_{A C}=55 \mathrm{~N} \tag{3}
\end{align*}
$$

Solving the system of linear equations using conventional algorithms gives:

$$
\begin{aligned}
& T_{A B}=446.71 \mathrm{~N} \\
& T_{A C}=341.71 \mathrm{~N}
\end{aligned} P=960 \mathrm{~N}
$$

PROBLEM 2.108

Three cables are connected at A, where the forces \mathbf{P} and \mathbf{Q} are applied as shown. Knowing that $P=1200 \mathrm{~N}$, determine the values of Q for which cable $A D$ is taut.

SOLUTION

We assume that $T_{A D}=0$ and write $\quad \Sigma \mathbf{F}_{A}=0: \quad \mathbf{T}_{A B}+\mathbf{T}_{A C}+Q \mathbf{j}+(1200 \mathrm{~N}) \mathbf{i}=0$

$$
\begin{aligned}
& \overrightarrow{A B}=-(960 \mathrm{~mm}) \mathbf{i}-(240 \mathrm{~mm}) \mathbf{j}+(380 \mathrm{~mm}) \mathbf{k} \quad A B=1060 \mathrm{~mm} \\
& \overrightarrow{A C}=-(960 \mathrm{~mm}) \mathbf{i}-(240 \mathrm{~mm}) \mathbf{j}-(320 \mathrm{~mm}) \mathbf{k} \quad A C=1040 \mathrm{~mm} \\
& \mathbf{T}_{A B}=T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B}=\left(-\frac{48}{53} \mathbf{i}-\frac{12}{53} \mathbf{j}+\frac{19}{53} \mathbf{k}\right) T_{A B} \\
& \mathbf{T}_{A C}=T_{A C} \lambda_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C}=\left(-\frac{12}{13} \mathbf{i}-\frac{3}{13} \mathbf{j}-\frac{4}{13} \mathbf{k}\right) T_{A C}
\end{aligned}
$$

Substituting into $\Sigma \mathbf{F}_{A}=0$, factoring $\mathbf{i}, \mathbf{j}, \mathbf{k}$, and setting each coefficient equal to ϕ gives:

$$
\begin{align*}
& \mathbf{i}: \quad-\frac{48}{53} T_{A B}-\frac{12}{13} T_{A C}+1200 \mathrm{~N}=0 \tag{1}\\
& \mathbf{j}: \quad-\frac{12}{53} T_{A B}-\frac{3}{13} T_{A C}+Q=0 \tag{2}\\
& \mathbf{k}: \quad \frac{19}{53} T_{A B}-\frac{4}{13} T_{A C}=0 \tag{3}
\end{align*}
$$

Solving the resulting system of linear equations using conventional algorithms gives:

$$
\begin{aligned}
T_{A B} & =605.71 \mathrm{~N} \\
T_{A C} & =705.71 \mathrm{~N} \\
Q & =300.00 \mathrm{~N}
\end{aligned}
$$

$$
0 \leq Q<300 \mathrm{~N}
$$

Note: This solution assumes that Q is directed upward as shown $(Q \geq 0)$, if negative values of Q are considered, cable $A D$ remains taut, but $A C$ becomes slack for $Q=-460 \mathrm{~N}$.

SOLUTION

We note that the weight of the plate is equal in magnitude to the force \mathbf{P} exerted by the support on Point A.

Free Body \boldsymbol{A} :

$$
\Sigma F=0: \quad \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}+P \mathbf{j}=0
$$

We have:

$$
\begin{array}{ll}
\overrightarrow{A B}=-(320 \mathrm{~mm}) \mathbf{i}-(480 \mathrm{~mm}) \mathbf{j}+(360 \mathrm{~mm}) \mathbf{k} & A B=680 \mathrm{~mm} \\
\overrightarrow{A C}=(450 \mathrm{~mm}) \mathbf{i}-(480 \mathrm{~mm}) \mathbf{j}+(360 \mathrm{~mm}) \mathbf{k} & A C=750 \mathrm{~mm} \\
\overrightarrow{A D}=(250 \mathrm{~mm}) \mathbf{i}-(480 \mathrm{~mm}) \mathbf{j}-(360 \mathrm{~mm}) \mathbf{k} & A D=650 \mathrm{~mm}
\end{array}
$$

Thus:

$$
\begin{aligned}
& \mathbf{T}_{A B}=T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B}=\left(-\frac{8}{17} \mathbf{i}-\frac{12}{17} \mathbf{j}+\frac{9}{17} \mathbf{k}\right) T_{A B} \\
& \mathbf{T}_{A C}=T_{A C} \lambda_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C}=(0.6 \mathbf{i}-0.64 \mathbf{j}+0.48 \mathbf{k}) T_{A C} \\
& \mathbf{T}_{A D}=T_{A D} \lambda_{A D}=T_{A D} \frac{\overrightarrow{A D}}{A D}=\left(\frac{5}{13} \mathbf{i}-\frac{9.6}{13} \mathbf{j}-\frac{7.2}{13} \mathbf{k}\right) T_{A D}
\end{aligned}
$$

Substituting into the Eq. $\Sigma F=0$ and factoring $\mathbf{i}, \mathbf{j}, \mathbf{k}$:

$$
\begin{aligned}
& \left(-\frac{8}{17} T_{A B}+0.6 T_{A C}+\frac{5}{13} T_{A D}\right) \mathbf{i} \\
& +\left(-\frac{12}{17} T_{A B}-0.64 T_{A C}-\frac{9.6}{13} T_{A D}+P\right) \mathbf{j} \\
& +\left(\frac{9}{17} T_{A B}+0.48 T_{A C}-\frac{7.2}{13} T_{A D}\right) \mathbf{k}=0
\end{aligned}
$$

PROBLEM 2.109 (Continued)

Setting the coefficient of $\mathbf{i}, \mathbf{j}, \mathbf{k}$ equal to zero:

$$
\begin{array}{ll}
\text { i: } & -\frac{8}{17} T_{A B}+0.6 T_{A C}+\frac{5}{13} T_{A D}=0 \\
\text { j: } & -\frac{12}{7} T_{A B}-0.64 T_{A C}-\frac{9.6}{13} T_{A D}+P=0 \\
\text { k: } & \frac{9}{17} T_{A B}+0.48 T_{A C}-\frac{7.2}{13} T_{A D}=0 \tag{3}
\end{array}
$$

Making $T_{A C}=60 \mathrm{~N}$ in (1) and (3):

$$
\begin{align*}
-\frac{8}{17} T_{A B}+36 \mathrm{~N}+\frac{5}{13} T_{A D} & =0 \\
\frac{9}{17} T_{A B}+28.8 \mathrm{~N}-\frac{7.2}{13} T_{A D} & =0 \tag{3'}
\end{align*}
$$

Multiply (1^{\prime}) by $9,\left(3^{\prime}\right)$ by 8 , and add:

$$
554.4 \mathrm{~N}-\frac{12.6}{13} T_{A D}=0 \quad T_{A D}=572.0 \mathrm{~N}
$$

Substitute into (1^{\prime}) and solve for $T_{A B}$:

$$
T_{A B}=\frac{17}{8}\left(36+\frac{5}{13} \times 572\right) \quad T_{A B}=544.0 \mathrm{~N}
$$

Substitute for the tensions in Eq. (2) and solve for P :

$$
P=\frac{12}{17}(544 \mathrm{~N})+0.64(60 \mathrm{~N})+\frac{9.6}{13}(572 \mathrm{~N})
$$

$$
=844.8 \mathrm{~N} \quad \text { Weight of plate }=P=845 \mathrm{~N}
$$

SOLUTION

See Problem 2.109 for the figure and the analysis leading to the linear algebraic Equations (1), (2), and (3) below:

$$
\begin{align*}
-\frac{8}{17} T_{A B}+0.6 T_{A C}+\frac{5}{13} T_{A D} & =0 \tag{1}\\
-\frac{12}{17} T_{A B}+0.64 T_{A C}-\frac{9.6}{13} T_{A D}+P & =0 \tag{2}\\
\frac{9}{17} T_{A B}+0.48 T_{A C}-\frac{7.2}{13} T_{A D} & =0 \tag{3}
\end{align*}
$$

Making $T_{A D}=520 \mathrm{~N}$ in Eqs. (1) and (3):

$$
\begin{align*}
& -\frac{8}{17} T_{A B}+0.6 T_{A C}+200 \mathrm{~N}=0 \\
& \frac{9}{17} T_{A B}+0.48 T_{A C}-288 \mathrm{~N}=0 \tag{3'}
\end{align*}
$$

Multiply (1^{\prime}) by $9,\left(3^{\prime}\right)$ by 8 , and add:

$$
9.24 T_{A C}-504 \mathrm{~N}=0 \quad T_{A C}=54.5455 \mathrm{~N}
$$

Substitute into (1') and solve for $T_{A B}$:

$$
T_{A B}=\frac{17}{8}(0.6 \times 54.5455+200) \quad T_{A B}=494.545 \mathrm{~N}
$$

Substitute for the tensions in Eq. (2) and solve for P :

$$
P=\frac{12}{17}(494.545 \mathrm{~N})+0.64(54.5455 \mathrm{~N})+\frac{9.6}{13}(520 \mathrm{~N})
$$

$$
=768.00 \mathrm{~N} \quad \text { Weight of plate }=P=768 \mathrm{~N}
$$

SOLUTION

$$
\Sigma \mathbf{F}=0: \quad \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}+P \mathbf{j}=0 \quad \text { Free-Body Diagram at } A:
$$

$$
\begin{array}{lc}
\overrightarrow{A B}=-20 \mathbf{i}-100 \mathbf{j}+25 \mathbf{k} & A B=105 \mathrm{ft} \\
\overrightarrow{A C}=60 \mathbf{i}-100 \mathbf{j}+18 \mathbf{k} & A C=118 \mathrm{ft} \\
\overrightarrow{A D}=-20 \mathbf{i}-100 \mathbf{j}-74 \mathbf{k} & A D=126 \mathrm{ft}
\end{array}
$$

We write

$$
\begin{aligned}
\mathbf{T}_{A B} & =T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B} \\
& =\left(-\frac{4}{21} \mathbf{i}-\frac{20}{21} \mathbf{j}+\frac{5}{21} \mathbf{k}\right) T_{A B} \\
\mathbf{T}_{A C} & =T_{A C} \boldsymbol{\lambda}_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C} \\
& =\left(\frac{30}{59} \mathbf{i}-\frac{50}{59} \mathbf{j}+\frac{9}{59} \mathbf{k}\right) T_{A C} \\
\mathbf{T}_{A D} & =T_{A D} \lambda_{A D}=T_{A D} \frac{\overrightarrow{A D}}{A D} \\
& =\left(-\frac{10}{63} \mathbf{i}-\frac{50}{63} \mathbf{j}-\frac{37}{63} \mathbf{k}\right) T_{A D}
\end{aligned}
$$

Substituting into the Eq. $\Sigma \mathbf{F}=0$ and factoring $\mathbf{i}, \mathbf{j}, \mathbf{k}$:

PROBLEM 2.111 (Continued)

$$
\begin{aligned}
& \left(-\frac{4}{21} T_{A B}+\frac{30}{59} T_{A C}-\frac{10}{63} T_{A D}\right) \mathbf{i} \\
& +\left(-\frac{20}{21} T_{A B}-\frac{50}{59} T_{A C}-\frac{50}{63} T_{A D}+P\right) \mathbf{j} \\
& +\left(\frac{5}{21} T_{A B}+\frac{9}{59} T_{A C}-\frac{37}{63} T_{A D}\right) \mathbf{k}=0
\end{aligned}
$$

Setting the coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$, equal to zero:

$$
\begin{align*}
& \text { i: } \quad-\frac{4}{21} T_{A B}+\frac{30}{59} T_{A C}-\frac{10}{63} T_{A D}=0 \tag{1}\\
& \mathbf{j}: \quad-\frac{20}{21} T_{A B}-\frac{50}{59} T_{A C}-\frac{50}{63} T_{A D}+P=0 \tag{2}\\
& \mathbf{k}: \quad \frac{5}{21} T_{A B}+\frac{9}{59} T_{A C}-\frac{37}{63} T_{A D}=0 \tag{3}
\end{align*}
$$

Set $T_{A B}=840 \mathrm{lb}$ in Eqs. (1) - (3):

$$
\begin{align*}
-160 \mathrm{lb}+\frac{30}{59} T_{A C}-\frac{10}{63} T_{A D} & =0 \\
-800 \mathrm{lb}-\frac{50}{59} T_{A C}-\frac{50}{63} T_{A D}+P & =0 \\
200 \mathrm{lb}+\frac{9}{59} T_{A C}-\frac{37}{63} T_{A D} & =0 \tag{3'}
\end{align*}
$$

Solving, $\quad T_{A C}=458.12 \mathrm{lb} \quad T_{A D}=459.53 \mathrm{lb} \quad P=1552.94 \mathrm{lb}$ $P=1553 \mathrm{lb}$

SOLUTION

$$
\Sigma \mathbf{F}=0: \quad \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}+P \mathbf{j}=0 \quad \text { Free-Body Diagram at } A:
$$

$$
\begin{array}{ll}
\overrightarrow{A B}=-20 \mathbf{i}-100 \mathbf{j}+25 \mathbf{k} & A B=105 \mathrm{ft} \\
\overrightarrow{A C}=60 \mathbf{i}-100 \mathbf{j}+18 \mathbf{k} & A C=118 \mathrm{ft} \\
\overrightarrow{A D}=-20 \mathbf{i}-100 \mathbf{j}-74 \mathbf{k} & A D=126 \mathrm{ft}
\end{array}
$$

We write

$$
\begin{aligned}
\mathbf{T}_{A B} & =T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B} \\
& =\left(-\frac{4}{21} \mathbf{i}-\frac{20}{21} \mathbf{j}+\frac{5}{21} \mathbf{k}\right) T_{A B} \\
\mathbf{T}_{A C} & =T_{A C} \boldsymbol{\lambda}_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C} \\
& =\left(\frac{30}{59} \mathbf{i}-\frac{50}{59} \mathbf{j}+\frac{9}{59} \mathbf{k}\right) T_{A C} \\
\mathbf{T}_{A D} & =T_{A D} \lambda_{A D}=T_{A D} \frac{\overrightarrow{A D}}{A D} \\
& =\left(-\frac{10}{63} \mathbf{i}-\frac{50}{63} \mathbf{j}-\frac{37}{63} \mathbf{k}\right) T_{A D}
\end{aligned}
$$

Substituting into the Eq. $\Sigma \mathbf{F}=0$ and factoring $\mathbf{i}, \mathbf{j}, \mathbf{k}$:

PROBLEM 2.112 (Continued)

$$
\begin{aligned}
& \left(-\frac{4}{21} T_{A B}+\frac{30}{59} T_{A C}-\frac{10}{63} T_{A D}\right) \mathbf{i} \\
& +\left(-\frac{20}{21} T_{A B}-\frac{50}{59} T_{A C}-\frac{50}{63} T_{A D}+P\right) \mathbf{j} \\
& +\left(\frac{5}{21} T_{A B}+\frac{9}{59} T_{A C}-\frac{37}{63} T_{A D}\right) \mathbf{k}=0
\end{aligned}
$$

Setting the coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$, equal to zero:

$$
\begin{array}{ll}
\text { i: } & \quad-\frac{4}{21} T_{A B}+\frac{30}{59} T_{A C}-\frac{10}{63} T_{A D}=0 \\
\text { j: } & -\frac{20}{21} T_{A B}-\frac{50}{59} T_{A C}-\frac{50}{63} T_{A D}+P=0 \\
\text { k: } & \quad \frac{5}{21} T_{A B}+\frac{9}{59} T_{A C}-\frac{37}{63} T_{A D}=0 \tag{3}
\end{array}
$$

Set $T_{A C}=590 \mathrm{lb}$ in Eqs. (1) - (3):

$$
\begin{align*}
-\frac{4}{21} T_{A B}+300 \mathrm{lb}-\frac{10}{63} T_{A D} & =0 \tag{1'}\\
-\frac{20}{21} T_{A B}-500 \mathrm{lb}-\frac{50}{63} T_{A D}+P & =0 \tag{2'}\\
\frac{5}{21} T_{A B}+90 \mathrm{lb}-\frac{37}{63} T_{A D} & =0 \tag{3'}
\end{align*}
$$

Solving,

$$
T_{A B}=1081.82 \mathrm{lb} \quad T_{A D}=591.82 \mathrm{lb}
$$

$$
P=2000 \mathrm{lb}
$$

PROBLEM 2.113

In trying to move across a slippery icy surface, a $175-\mathrm{lb}$ man uses two ropes $A B$ and $A C$. Knowing that the force exerted on the man by the icy surface is perpendicular to that surface, determine the tension in each rope.

SOLUTION

Free-Body Diagram at A

$\mathbf{N}=N\left(\frac{16}{34} \mathbf{i}+\frac{30}{34} \mathbf{j}\right)$
and $\mathbf{W}=W \mathbf{j}=-(175 \mathrm{lb}) \mathbf{j}$

$$
\begin{aligned}
\mathbf{T}_{A C}=T_{A C} \lambda_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C} & =T_{A C} \frac{(-30 \mathrm{ft}) \mathbf{i}+(20 \mathrm{ft}) \mathbf{j}-(12 \mathrm{ft}) \mathbf{k}}{38 \mathrm{ft}} \\
& =T_{A C}\left(-\frac{15}{19} \mathbf{i}+\frac{10}{19} \mathbf{j}-\frac{6}{19} \mathbf{k}\right) \\
\mathbf{T}_{A B}=T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B} & =T_{A B} \frac{(-30 \mathrm{ft}) \mathbf{i}+(24 \mathrm{ft}) \mathbf{j}+(32 \mathrm{ft}) \mathbf{k}}{50 \mathrm{ft}} \\
& =T_{A B}\left(-\frac{15}{25} \mathbf{i}+\frac{12}{25} \mathbf{j}+\frac{16}{25} \mathbf{k}\right)
\end{aligned}
$$

Equilibrium condition: $\Sigma \mathbf{F}=0$

$$
\mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{N}+\mathbf{W}=0
$$

PROBLEM 2.113 (Continued)

Substituting the expressions obtained for $\mathbf{T}_{A B}, \mathbf{T}_{A C}, \mathbf{N}$, and \mathbf{W}; factoring \mathbf{i}, \mathbf{j}, and \mathbf{k}; and equating each of the coefficients to zero gives the following equations:

From i: $\quad-\frac{15}{25} T_{A B}-\frac{15}{19} T_{A C}+\frac{16}{34} N=0$
From j: $\quad \frac{12}{25} T_{A B}+\frac{10}{19} T_{A C}+\frac{30}{34} N-(175 \mathrm{lb})=0$
From \mathbf{k} :

$$
\begin{equation*}
\frac{16}{25} T_{A B}-\frac{6}{19} T_{A C}=0 \tag{2}
\end{equation*}
$$

Solving the resulting set of equations gives:

$$
T_{A B}=30.8 \mathrm{lb} ; T_{A C}=62.5 \mathrm{lb}
$$

PROBLEM 2.114

Solve Problem 2.113, assuming that a friend is helping the man at A by pulling on him with a force $\mathbf{P}=-(45 \mathrm{lb}) \mathbf{k}$.

PROBLEM 2.113 In trying to move across a slippery icy surface, a $175-\mathrm{lb}$ man uses two ropes $A B$ and $A C$. Knowing that the force exerted on the man by the icy surface is perpendicular to that surface, determine the tension in each rope.

SOLUTION

Refer to Problem 2.113 for the figure and analysis leading to the following set of equations, Equation (3) being modified to include the additional force $\mathbf{P}=(-45 \mathrm{lb}) \mathbf{k}$.

$$
\begin{align*}
-\frac{15}{25} T_{A B}-\frac{15}{19} T_{A C}+\frac{16}{34} N & =0 \tag{1}\\
\frac{12}{25} T_{A B}+\frac{10}{19} T_{A C}+\frac{30}{34} N-(175 \mathrm{lb}) & =0 \tag{2}\\
\frac{16}{25} T_{A B}-\frac{6}{19} T_{A C}-(45 \mathrm{lb}) & =0 \tag{3}
\end{align*}
$$

Solving the resulting set of equations simultaneously gives:

$$
\begin{aligned}
T_{A B} & =81.3 \mathrm{lb} \\
T_{A C} & =22.2 \mathrm{lb}
\end{aligned}
$$

SOLUTION

See Problem 2.109 for the figure and the analysis leading to the linear algebraic Equations (1), (2), and (3) below. Setting $P=792$ N gives:

$$
\begin{align*}
-\frac{8}{17} T_{A B}+0.6 T_{A C}+\frac{5}{13} T_{A D} & =0 \tag{1}\\
-\frac{12}{17} T_{A B}-0.64 T_{A C}-\frac{9.6}{13} T_{A D}+792 \mathrm{~N} & =0 \tag{2}\\
\frac{9}{17} T_{A B}+0.48 T_{A C}-\frac{7.2}{13} T_{A D} & =0 \tag{3}
\end{align*}
$$

Solving Equations (1), (2), and (3) by conventional algorithms gives

$$
\begin{array}{lc}
T_{A B}=510.00 \mathrm{~N} & T_{A B}=510 \mathrm{~N} \\
T_{A C}=56.250 \mathrm{~N} & T_{A C}=56.2 \mathrm{~N} \\
T_{A D}=536.25 \mathrm{~N} & T_{A D}=536 \mathrm{~N}
\end{array}
$$

SOLUTION

$$
\Sigma \mathbf{F}_{A}=0: \quad \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}+\mathbf{P}+\mathbf{Q}=0
$$

Where

$$
\begin{aligned}
\mathbf{P} & =P \mathbf{i} \text { and } \mathbf{Q}=Q \mathbf{j} \\
\overrightarrow{A B} & =-(960 \mathrm{~mm}) \mathbf{i}-(240 \mathrm{~mm}) \mathbf{j}+(380 \mathrm{~mm}) \mathbf{k} \quad A B=1060 \mathrm{~mm} \\
\overrightarrow{A C} & =-(960 \mathrm{~mm}) \mathbf{i}-(240 \mathrm{~mm}) \mathbf{j}-(320 \mathrm{~mm}) \mathbf{k} \quad A C=1040 \mathrm{~mm} \\
\overrightarrow{A D} & =-(960 \mathrm{~mm}) \mathbf{i}+(720 \mathrm{~mm}) \mathbf{j}-(220 \mathrm{~mm}) \mathbf{k} \quad A D=1220 \mathrm{~mm} \\
\mathbf{T}_{A B} & =T_{A B} \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B}=T_{A B}\left(-\frac{48}{53} \mathbf{i}-\frac{12}{53} \mathbf{j}+\frac{19}{53} \mathbf{k}\right) \\
\mathbf{T}_{A C} & =T_{A C} \lambda_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C}=T_{A C}\left(-\frac{12}{13} \mathbf{i}-\frac{3}{13} \mathbf{j}-\frac{4}{13} \mathbf{k}\right) \\
\mathbf{T}_{A D} & =T_{A D} \lambda_{A D}=T_{A D} \frac{\overrightarrow{A D}}{A D}=T_{A D}\left(-\frac{48}{61} \mathbf{i}+\frac{36}{61} \mathbf{j}-\frac{11}{61} \mathbf{k}\right)
\end{aligned}
$$

Substituting into $\Sigma \mathbf{F}_{A}=0$, setting $P=(2880 \mathrm{~N}) \mathbf{i}$ and $Q=0$, and setting the coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$ equal to 0 , we obtain the following three equilibrium equations:

$$
\begin{align*}
& \mathbf{i}: \quad-\frac{48}{53} T_{A B}-\frac{12}{13} T_{A C}-\frac{48}{61} T_{A D}+2880 \mathrm{~N}=0 \tag{1}\\
& \mathbf{j}: \quad-\frac{12}{53} T_{A B}-\frac{3}{13} T_{A C}+\frac{36}{61} T_{A D}=0 \tag{2}\\
& \mathbf{k}: \quad \frac{19}{53} T_{A B}-\frac{4}{13} T_{A C}-\frac{11}{61} T_{A D}=0 \tag{3}
\end{align*}
$$

PROBLEM 2．116（Continued）

Solving the system of linear equations using conventional algorithms gives：

$$
\begin{aligned}
& T_{A B}=1340.14 \mathrm{~N} \\
& T_{A C}=1025.12 \mathrm{~N} \\
& T_{A D}=915.03 \mathrm{~N}
\end{aligned}
$$

$$
\begin{gathered}
T_{A B}=1340 \mathrm{~N} \text { 《 } \\
T_{A C}=1025 \mathrm{~N} \text { 《 } \\
T_{A D}=915 \mathrm{~N} \text { 乙 }
\end{gathered}
$$

SOLUTION

See Problem 2.116 for the analysis leading to the linear algebraic Equations (1), (2), and (3) below:

$$
\begin{align*}
-\frac{48}{53} T_{A B}-\frac{12}{13} T_{A C}-\frac{48}{61} T_{A D}+P & =0 \tag{1}\\
-\frac{12}{53} T_{A B}-\frac{3}{13} T_{A C}+\frac{36}{61} T_{A D}+Q & =0 \tag{2}\\
\frac{19}{53} T_{A B}-\frac{4}{13} T_{A C}-\frac{11}{61} T_{A D} & =0 \tag{3}
\end{align*}
$$

Setting $P=2880 \mathrm{~N}$ and $Q=576 \mathrm{~N}$ gives:

$$
\begin{align*}
-\frac{48}{53} T_{A B}-\frac{12}{13} T_{A C}-\frac{48}{61} T_{A D}+2880 \mathrm{~N} & =0 \tag{1'}\\
-\frac{12}{53} T_{A B}-\frac{3}{13} T_{A C}+\frac{36}{61} T_{A D}+576 \mathrm{~N} & =0 \tag{2'}\\
\frac{19}{53} T_{A B}-\frac{4}{13} T_{A C}-\frac{11}{61} T_{A D} & =0 \tag{3'}
\end{align*}
$$

Solving the resulting set of equations using conventional algorithms gives:

$$
\begin{aligned}
& T_{A B}=1431.00 \mathrm{~N} \\
& T_{A C}=1560.00 \mathrm{~N} \\
& T_{A D}=183.010 \mathrm{~N}
\end{aligned}
$$

$$
T_{A B}=1431 \mathrm{~N}
$$

$$
T_{A C}=1560 \mathrm{~N}
$$

$$
T_{A D}=183.0 \mathrm{~N}
$$

PROBLEM 2.118

For the cable system of Problems 2.107 and 2.108, determine the tension in each cable knowing that $P=2880 \mathrm{~N}$ and $Q=-576 \mathrm{~N}$. (\mathbf{Q} is directed downward).

SOLUTION

See Problem 2.116 for the analysis leading to the linear algebraic Equations (1), (2), and (3) below:

$$
\begin{align*}
-\frac{48}{53} T_{A B}-\frac{12}{13} T_{A C}-\frac{48}{61} T_{A D}+P & =0 \tag{1}\\
-\frac{12}{53} T_{A B}-\frac{3}{13} T_{A C}+\frac{36}{61} T_{A D}+Q & =0 \tag{2}\\
\frac{19}{53} T_{A B}-\frac{4}{13} T_{A C}-\frac{11}{61} T_{A D} & =0 \tag{3}
\end{align*}
$$

Setting $P=2880 \mathrm{~N}$ and $Q=-576 \mathrm{~N}$ gives:

$$
\begin{align*}
-\frac{48}{53} T_{A B}-\frac{12}{13} T_{A C}-\frac{48}{61} T_{A D}+2880 \mathrm{~N} & =0 \\
-\frac{12}{53} T_{A B}-\frac{3}{13} T_{A C}+ & \frac{36}{61} T_{A D}-576 \mathrm{~N}
\end{align*}=0
$$

Solving the resulting set of equations using conventional algorithms gives:

$$
\begin{aligned}
& T_{A B}=1249.29 \mathrm{~N} \\
& T_{A C}=490.31 \mathrm{~N} \\
& T_{A D}=1646.97 \mathrm{~N}
\end{aligned}
$$

$$
\begin{gathered}
T_{A B}=1249 \mathrm{~N} \\
T_{A C}=490 \mathrm{~N} \\
T_{A D}=1647 \mathrm{~N}
\end{gathered}
$$

PROBLEM 2.119

For the transmission tower of Probs. 2.111 and 2.112, determine the tension in each guy wire knowing that the tower exerts on the pin at A an upward vertical force of 1800 lb .

PROBLEM 2.111 A transmission tower is held by three guy wires attached to a pin at A and anchored by bolts at B, C, and D. If the tension in wire $A B$ is 840 lb , determine the vertical force \mathbf{P} exerted by the tower on the pin at A.

SOLUTION

See Problem 2.111 for the figure and the analysis leading to the linear algebraic Equations (1), (2), and (3) below:

$$
\begin{align*}
& \mathbf{i}: \quad-\frac{4}{21} T_{A B}+\frac{30}{59} T_{A C}-\frac{10}{63} T_{A D}=0 \tag{1}\\
& \mathbf{j}: \quad-\frac{20}{21} T_{A B}-\frac{50}{59} T_{A C}-\frac{50}{63} T_{A D}+P=0 \tag{2}\\
& \mathbf{k}: \quad \frac{5}{21} T_{A B}+\frac{9}{59} T_{A C}-\frac{37}{63} T_{A D}=0 \tag{3}
\end{align*}
$$

Substituting for $P=1800 \mathrm{lb}$ in Equations (1), (2), and (3) above and solving the resulting set of equations using conventional algorithms gives:

$$
\begin{align*}
-\frac{4}{21} T_{A B}+\frac{30}{59} T_{A C}-\frac{10}{63} T_{A D} & =0 \\
-\frac{20}{21} T_{A B}-\frac{50}{59} T_{A C}-\frac{50}{63} T_{A D}+1800 \mathrm{lb} & =0 \tag{2'}\\
\frac{5}{21} T_{A B}+\frac{9}{59} T_{A C}-\frac{37}{63} T_{A D} & =0 \tag{3'}\\
T_{A B} & =973.64 \mathrm{lb} \\
T_{A C} & =531.00 \mathrm{lb} \\
T_{A D} & =532.64 \mathrm{lb}
\end{align*}
$$

$T_{A B}=974 \mathrm{lb}$

$$
T_{A C}=531 \mathrm{lb}
$$

$$
T_{A D}=533 \mathrm{lb}
$$

PROBLEM 2.120

Three wires are connected at point D, which is located 18 in. below the T-shaped pipe support $A B C$. Determine the tension in each wire when a $180-\mathrm{lb}$ cylinder is suspended from point D as shown.

SOLUTION

Free-Body Diagram of Point D :

The forces applied at D are:

$$
\mathbf{T}_{D A}, \mathbf{T}_{D B}, \mathbf{T}_{D C} \text { and } \mathbf{W}
$$

where $\mathbf{W}=-180.0 \mathrm{lbj}$. To express the other forces in terms of the unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$, we write

$$
\begin{aligned}
& \overrightarrow{D A}=(18 \mathrm{in} .) \mathbf{j}+(22 \mathrm{in} .) \mathbf{k} \\
& D A=28.425 \mathrm{in} . \\
& \overrightarrow{D B}=-(24 \mathrm{in} .) \mathbf{i}+(18 \mathrm{in} .) \mathbf{j}-(16 \mathrm{in} .) \mathbf{k} \\
& D B=34.0 \mathrm{in} . \\
& \overrightarrow{D C}=(24 \mathrm{in} .) \mathbf{i}+(18 \mathrm{in} .) \mathbf{j}-(16 \mathrm{in} .) \mathbf{k} \\
& D C=34.0 \text { in. }
\end{aligned}
$$

PROBLEM 2.120 (Continued)

and

$$
\begin{aligned}
\mathbf{T}_{D A} & =T_{D a} \lambda_{D A}=T_{D a} \frac{\overrightarrow{D A}}{D A} \\
& =(0.63324 \mathbf{j}+0.77397 \mathbf{k}) T_{D A} \\
\mathbf{T}_{D B} & =T_{D B} \lambda_{D B}=T_{D B} \frac{\overrightarrow{D B}}{D B} \\
& =(-0.70588 \mathbf{i}+0.52941 \mathbf{j}-0.47059 \mathbf{k}) T_{D B} \\
\mathbf{T}_{D C} & =T_{D C} \lambda_{D C}=T_{D C} \frac{\overrightarrow{D C}}{D C} \\
& =(0.70588 \mathbf{i}+0.52941 \mathbf{j}-0.47059 \mathbf{k}) T_{D C}
\end{aligned}
$$

Equilibrium Condition with $\quad \mathbf{W}=-W \mathbf{j}$

$$
\Sigma F=0: \quad \mathbf{T}_{D A}+\mathbf{T}_{D B}+\mathbf{T}_{D C}-W \mathbf{j}=0
$$

Substituting the expressions obtained for $\mathbf{T}_{D A}, \mathbf{T}_{D B}$, and $\mathbf{T}_{D C}$ and factoring \mathbf{i}, \mathbf{j}, and \mathbf{k} :

$$
\begin{array}{r}
\left(-0.70588 T_{D B}+0.70588 T_{D C}\right) \mathbf{i} \\
\left(0.63324 T_{D A}+0.52941 T_{D B}+0.52941 T_{D C}-W\right) \mathbf{j} \\
\left(0.77397 T_{D A}-0.47059 T_{D B}-0.47059 T_{D C}\right) \mathbf{k}
\end{array}
$$

Equating to zero the coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$:

$$
\begin{array}{r}
-0.70588 T_{D B}+0.70588 T_{D C}=0 \\
0.63324 T_{D A}+0.52941 T_{D B}+0.52941 T_{D C}-W=0 \\
0.77397 T_{D A}-0.47059 T_{D B}-0.47059 T_{D C}=0 \tag{3}
\end{array}
$$

Substituting $W=180 \mathrm{lb}$ in Equations (1), (2), and (3) above, and solving the resulting set of equations using conventional algorithms gives,

$$
\begin{gathered}
T_{D A}=119.7 \mathrm{lb} \\
T_{D B}=98.4 \mathrm{lb} \\
T_{D C}=98.4 \mathrm{lb}
\end{gathered}
$$

SOLUTION

The (vector) force in each cable can be written as the product of the (scalar) force and the unit vector along the cable. That is, with

$$
\begin{aligned}
\overrightarrow{A B} & =-(0.78 \mathrm{~m}) \mathbf{i}+(1.6 \mathrm{~m}) \mathbf{j}+(0 \mathrm{~m}) \mathbf{k} \\
A B & =\sqrt{(-0.78 \mathrm{~m})^{2}+(1.6 \mathrm{~m})^{2}+(0)^{2}} \\
& =1.78 \mathrm{~m} \\
\mathbf{T}_{A B} & =T \lambda_{A B}=T_{A B} \frac{\overrightarrow{A B}}{A B} \\
& =\frac{T_{A B}}{1.78 \mathrm{~m}}[-(0.78 \mathrm{~m}) \mathbf{i}+(1.6 \mathrm{~m}) \mathbf{j}+(0 \mathrm{~m}) \mathbf{k}] \\
\mathbf{T}_{A B} & =T_{A B}(-0.4382 \mathbf{i}+0.8989 \mathbf{j}+0 \mathbf{k})
\end{aligned}
$$

and
and

$$
\begin{aligned}
\overrightarrow{A C} & =(0) \mathbf{i}+(1.6 \mathrm{~m}) \mathbf{j}+(1.2 \mathrm{~m}) \mathbf{k} \\
A C & =\sqrt{(0 \mathrm{~m})^{2}+(1.6 \mathrm{~m})^{2}+(1.2 \mathrm{~m})^{2}}=2 \mathrm{~m} \\
\mathbf{T}_{A C} & =T \boldsymbol{\lambda}_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C}=\frac{T_{A C}}{2 \mathrm{~m}}[(0) \mathbf{i}+(1.6 \mathrm{~m}) \mathbf{j}+(1.2 \mathrm{~m}) \mathbf{k}] \\
\mathbf{T}_{A C} & =T_{A C}(0.8 \mathbf{j}+0.6 \mathbf{k})
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{A D}=(1.3 \mathrm{~m}) \mathbf{i}+(1.6 \mathrm{~m}) \mathbf{j}+(0.4 \mathrm{~m}) \mathbf{k} \\
& A D=\sqrt{(1.3 \mathrm{~m})^{2}+(1.6 \mathrm{~m})^{2}+(0.4 \mathrm{~m})^{2}}=2.1 \mathrm{~m} \\
& \mathbf{T}_{A D}=T \lambda_{A D}=T_{A D} \frac{\overrightarrow{A D}}{A D}=\frac{T_{A D}}{2.1 \mathrm{~m}}[(1.3 \mathrm{~m}) \mathbf{i}+(1.6 \mathrm{~m}) \mathbf{j}+(0.4 \mathrm{~m}) \mathbf{k}] \\
& \mathbf{T}_{A D}=T_{A D}(0.6190 \mathbf{i}+0.7619 \mathbf{j}+0.1905 \mathbf{k})
\end{aligned}
$$

PROBLEM 2.121 (Continued)

Finally,

$$
\begin{aligned}
\overrightarrow{A E} & =-(0.4 \mathrm{~m}) \mathbf{i}+(1.6 \mathrm{~m}) \mathbf{j}-(0.86 \mathrm{~m}) \mathbf{k} \\
A E & =\sqrt{(-0.4 \mathrm{~m})^{2}+(1.6 \mathrm{~m})^{2}+(-0.86 \mathrm{~m})^{2}}=1.86 \mathrm{~m} \\
\mathbf{T}_{A E} & =T \lambda_{A E}=T_{A E} \frac{\overrightarrow{A E}}{A E} \\
& =\frac{T_{A E}}{1.86 \mathrm{~m}}[-(0.4 \mathrm{~m}) \mathbf{i}+(1.6 \mathrm{~m}) \mathbf{j}-(0.86 \mathrm{~m}) \mathbf{k}] \\
\mathbf{T}_{A E} & =T_{A E}(-0.2151 \mathbf{i}+0.8602 \mathbf{j}-0.4624 \mathbf{k})
\end{aligned}
$$

With the weight of the container

$$
\mathbf{W}=-W \mathbf{j}, \text { at } A \text { we have: }
$$

$$
\Sigma \mathbf{F}=0: \quad \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}-W \mathbf{j}=0
$$

Equating the factors of \mathbf{i}, \mathbf{j}, and \mathbf{k} to zero, we obtain the following linear algebraic equations:

$$
\begin{align*}
-0.4382 T_{A B}+0.6190 T_{A D}-0.2151 T_{A E} & =0 \tag{1}\\
0.8989 T_{A B}+0.8 T_{A C}+0.7619 T_{A D}+0.8602 T_{A E}-W & =0 \tag{2}\\
0.6 T_{A C}+0.1905 T_{A D}-0.4624 T_{A E} & =0 \tag{3}
\end{align*}
$$

Knowing that $W=1000 \mathrm{~N}$ and that because of the pulley system at $B T_{A B}=T_{A D}=P$, where P is the externally applied (unknown) force, we can solve the system of linear Equations (1), (2) and (3) uniquely for P.

$$
P=378 \mathrm{~N}
$$

SOLUTION

Here, as in Problem 2.121, the support of the container consists of the four cables $A E, A C, A D$, and $A B$, with the condition that the force in cables $A B$ and $A D$ is equal to the externally applied force P. Thus, with the condition

$$
T_{A B}=T_{A D}=P
$$

and using the linear algebraic equations of Problem 2.131 with $T_{A C}=150 \mathrm{~N}$, we obtain
(a) $\quad P=454 \mathrm{~N}$
(b) $\quad W=1202 \mathrm{~N}$

PROBLEM 2.123

Cable $B A C$ passes through a frictionless ring A and is attached to fixed supports at B and C, while cables $A D$ and $A E$ are both tied to the ring and are attached, respectively, to supports at D and E. Knowing that a $200-\mathrm{lb}$ vertical load \mathbf{P} is applied to ring A, determine the tension in each of the three cables.

SOLUTION

Free Body Diagram at A :

Since $T_{B A C}=$ tension in cable $B A C$, it follows that

$$
I_{A C}
$$

$$
\begin{gathered}
T_{A B}=T_{A C}=T_{B A C} \\
\mathbf{T}_{A B}=T_{B A C} \boldsymbol{\lambda}_{A B}=T_{B A C} \frac{(-17.5 \mathrm{in} .) \mathbf{i}+(60 \mathrm{in} .) \mathbf{j}}{62.5 \mathrm{in} .}=T_{B A C}\left(\frac{-17.5}{62.5} \mathbf{i}+\frac{60}{62.5} \mathbf{j}\right) \\
\mathbf{T}_{A C}=T_{B A C} \boldsymbol{\lambda}_{A C}=T_{B A C} \frac{(60 \mathrm{in} .) \mathbf{i}+(25 \mathrm{in} .) \mathbf{k}}{65 \mathrm{in} .}=T_{B A C}\left(\frac{60}{65} \mathbf{j}+\frac{25}{65} \mathbf{k}\right) \\
\mathbf{T}_{A D}=T_{A D} \boldsymbol{\lambda}_{A D}=T_{A D} \frac{(80 \mathrm{in} .) \mathbf{i}+(60 \mathrm{in} .) \mathbf{j}}{100 \mathrm{in} .}=T_{A D}\left(\frac{4}{5} \mathbf{i}+\frac{3}{5} \mathbf{j}\right) \\
\mathbf{T}_{A E}=T_{A E} \boldsymbol{\lambda}_{A E}=T_{A E} \frac{(60 \mathrm{in} .) \mathbf{j}-(45 \mathrm{in} .) \mathbf{k}}{75 \mathrm{in} .}=T_{A E}\left(\frac{4}{5} \mathbf{j}-\frac{3}{5} \mathbf{k}\right)
\end{gathered}
$$

PROBLEM 2.123 (Continued)

Substituting into $\Sigma \mathbf{F}_{A}=0$, setting $\mathbf{P}=(-200 \mathrm{lb}) \mathbf{j}$, and setting the coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$ equal to ϕ, we obtain the following three equilibrium equations:

From i: $-\frac{17.5}{62.5} T_{B A C}+\frac{4}{5} T_{A D}=0$
From
j: $\left(\frac{60}{62.5}+\frac{60}{65}\right) T_{B A C}+\frac{3}{5} T_{A D}+\frac{4}{5} T_{A E}-200 \mathrm{lb}=0$
From
$\mathbf{k}: \frac{25}{65} T_{B A C}-\frac{3}{5} T_{A E}=0$
Solving the system of linear equations using conventional algorithms gives:

$$
T_{B A C}=76.7 \mathrm{lb} ; T_{A D}=26.9 \mathrm{lb} ; T_{A E}=49.2 \mathrm{lb}
$$

PROBLEM 2.124

Knowing that the tension in cable $A E$ of Prob. 2.123 is 75 lb , determine (a) the magnitude of the load $\mathbf{P},(b)$ the tension in cables $B A C$ and $A D$.

PROBLEM 2.123 Cable $B A C$ passes through a frictionless ring A and is attached to fixed supports at B and C, while cables $A D$ and $A E$ are both tied to the ring and are attached, respectively, to supports at D and E. Knowing that a $200-\mathrm{lb}$ vertical load \mathbf{P} is applied to ring A, determine the tension in each of the three cables.

SOLUTION

Refer to the solution to Problem 2.123 for the figure and analysis leading to the following set of equilibrium equations, Equation (2) being modified to include $P \mathbf{j}$ as an unknown quantity:

$$
\begin{align*}
& -\frac{17.5}{62.5} T_{B A C}+\frac{4}{5} T_{A D}=0 \\
& \left(\frac{60}{62.5}+\frac{60}{65}\right) T_{B A C}+\frac{3}{5} T_{A D}+\frac{4}{5} T_{A E}-P=0 \\
& \frac{25}{65} T_{B A C}-\frac{3}{5} T_{A E}=0 \tag{3}
\end{align*}
$$

Substituting for $T_{A E}=75 \mathrm{lb}$ and solving simultaneously gives:
(a) $P=305 \mathrm{lb}$
(b) $\quad T_{B A C}=117.0 \mathrm{lb} ; T_{A D}=40.9 \mathrm{lb}$

PROBLEM 2.125

Collars A and B are connected by a $525-\mathrm{mm}-l o n g$ wire and can slide freely on frictionless rods. If a force $\mathbf{P}=(341 \mathrm{~N}) \mathbf{j}$ is applied to collar A, determine (a) the tension in the wire when $y=155 \mathrm{~mm}$, (b) the magnitude of the force \mathbf{Q} required to maintain the equilibrium of the system.

SOLUTION

For both Problems 2.125 and 2.126:

$$
(A B)^{2}=x^{2}+y^{2}+z^{2}
$$

Here

$$
(0.525 \mathrm{~m})^{2}=(0.20 \mathrm{~m})^{2}+y^{2}+z^{2}
$$

or

$$
y^{2}+z^{2}=0.23563 \mathrm{~m}^{2}
$$

Thus, when y given, z is determined,
Free-Body Diagrams of Collars:

Now

$$
\begin{aligned}
\lambda_{A B} & =\frac{\overrightarrow{A B}}{A B} \\
& =\frac{1}{0.525 \mathrm{~m}}(0.20 \mathbf{i}-y \mathbf{j}+z \mathbf{k}) \mathrm{m} \\
& =0.38095 \mathbf{i}-1.90476 y \mathbf{j}+1.90476 z \mathbf{k}
\end{aligned}
$$

Where y and z are in units of meters, m .
From the F.B. Diagram of collar $A: \quad \Sigma \mathbf{F}=0: \quad N_{x} \mathbf{i}+N_{z} \mathbf{k}+P \mathbf{j}+T_{A B} \lambda_{A B}=0$
Setting the \mathbf{j} coefficient to zero gives

$$
P-(1.90476 y) T_{A B}=0
$$

With

$$
P=341 \mathrm{~N}
$$

$$
T_{A B}=\frac{341 \mathrm{~N}}{1.90476 y}
$$

Now, from the free body diagram of collar B :

$$
\Sigma \mathbf{F}=0: \quad N_{x} \mathbf{i}+N_{y} \mathbf{j}+Q \mathbf{k}-T_{A B} \lambda_{A B}=0
$$

Setting the \mathbf{k} coefficient to zero gives

$$
Q-T_{A B}(1.90476 z)=0
$$

And using the above result for $T_{A B}$, we have

$$
Q=T_{A B} z=\frac{341 \mathrm{~N}}{(1.90476) y}(1.90476 z)=\frac{(341 \mathrm{~N})(z)}{y}
$$

PROBLEM 2.125 (Continued)

Then from the specifications of the problem, $y=155 \mathrm{~mm}=0.155 \mathrm{~m}$

$$
\begin{aligned}
z^{2} & =0.23563 \mathrm{~m}^{2}-(0.155 \mathrm{~m})^{2} \\
z & =0.46 \mathrm{~m}
\end{aligned}
$$

and
(a)

$$
\begin{aligned}
T_{A B} & =\frac{341 \mathrm{~N}}{0.155(1.90476)} \\
& =1155.00 \mathrm{~N}
\end{aligned}
$$

or
and
(b)

$$
\begin{aligned}
Q & =\frac{341 \mathrm{~N}(0.46 \mathrm{~m})(0.866)}{(0.155 \mathrm{~m})} \\
& =(1012.00 \mathrm{~N})
\end{aligned}
$$

or

$$
T_{A B}=1155 \mathrm{~N}
$$

PROBLEM 2.126

Solve Problem 2.125 assuming that $y=275 \mathrm{~mm}$.
PROBLEM 2.125 Collars A and B are connected by a $525-\mathrm{mm}$-long wire and can slide freely on frictionless rods. If a force $\mathbf{P}=(341 \mathrm{~N}) \mathbf{j}$ is applied to collar A, determine (a) the tension in the wire when $y=155 \mathrm{~mm}$, (b) the magnitude of the force \mathbf{Q} required to maintain the equilibrium of the system.

SOLUTION

From the analysis of Problem 2.125, particularly the results:

$$
\begin{aligned}
y^{2}+z^{2} & =0.23563 \mathrm{~m}^{2} \\
T_{A B} & =\frac{341 \mathrm{~N}}{1.90476 y} \\
Q & =\frac{341 \mathrm{~N}}{y} z
\end{aligned}
$$

With $y=275 \mathrm{~mm}=0.275 \mathrm{~m}$, we obtain:

$$
\begin{aligned}
z^{2} & =0.23563 \mathrm{~m}^{2}-(0.275 \mathrm{~m})^{2} \\
z & =0.40 \mathrm{~m}
\end{aligned}
$$

and
(a)

$$
T_{A B}=\frac{341 \mathrm{~N}}{(1.90476)(0.275 \mathrm{~m})}=651.00
$$

or

$$
T_{A B}=651 \mathrm{~N}
$$

and
(b)

$$
Q=\frac{341 \mathrm{~N}(0.40 \mathrm{~m})}{(0.275 \mathrm{~m})}
$$

or $Q=496 \mathrm{~N}$

SOLUTION

Using the force triangle and the laws of cosines and sines, we have

$$
\begin{aligned}
\gamma & =180^{\circ}-\left(40^{\circ}+20^{\circ}\right) \\
& =120^{\circ}
\end{aligned}
$$

Then

$$
\begin{aligned}
R^{2}= & (15 \mathrm{kN})^{2}+(10 \mathrm{kN})^{2} \\
& -2(15 \mathrm{kN})(10 \mathrm{kN}) \cos 120^{\circ} \\
= & 475 \mathrm{kN}^{2} \\
R= & 21.794 \mathrm{kN}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{10 \mathrm{kN}}{\sin \alpha} & =\frac{21.794 \mathrm{kN}}{\sin 120^{\circ}} \\
\sin \alpha & =\left(\frac{10 \mathrm{kN}}{21.794 \mathrm{kN}}\right) \sin 120^{\circ} \\
& =0.39737 \\
\alpha & =23.414
\end{aligned}
$$

Hence:

$$
\phi=\alpha+50^{\circ}=73.414
$$

$$
\mathbf{R}=21.8 \mathrm{kN} \nabla .73 .4^{\circ}
$$

PROBLEM 2.128

Determine the x and y components of each of the forces shown.

SOLUTION

Compute the following distances:

$$
\begin{aligned}
O A & =\sqrt{(24 \mathrm{in} .)^{2}+(45 \mathrm{in} .)^{2}} \\
& =51.0 \mathrm{in} . \\
O B & =\sqrt{(28 \mathrm{in} .)^{2}+(45 \mathrm{in} .)^{2}} \\
& =53.0 \mathrm{in} . \\
O C & =\sqrt{(40 \mathrm{in} .)^{2}+(30 \mathrm{in} .)^{2}} \\
& =50.0 \mathrm{in} .
\end{aligned}
$$

102-lb Force:
$F_{x}=-102 \mathrm{lb} \frac{24 \mathrm{in} .}{51.0 \mathrm{in} .}$

$F_{y}=+102 \mathrm{lb} \frac{45 \mathrm{in} .}{51.0 \mathrm{in} .}$

$$
F_{x}=-48.0 \mathrm{lb}
$$

$$
F_{y}=+90.0 \mathrm{lb}
$$

106-lb Force:
$F_{x}=+106 \mathrm{lb} \frac{28 \mathrm{in} .}{53.0 \mathrm{in} .}$
$F_{x}=+56.0 \mathrm{lb}$
$F_{y}=+106 \mathrm{lb} \frac{45 \mathrm{in} .}{53.0 \mathrm{in} .}$ $F_{y}=+90.0 \mathrm{lb}$

200-lb Force:
$F_{x}=-200 \mathrm{lb} \frac{40 \mathrm{in} .}{50.0 \mathrm{in} .}$
$F_{x}=-160.0 \mathrm{lb}$
$F_{y}=-200 \mathrm{lb} \frac{30 \mathrm{in} .}{50.0 \mathrm{in} .}$
$F_{y}=-120.0 \mathrm{lb}$

PROBLEM 2.129

A hoist trolley is subjected to the three forces shown. Knowing that $\alpha=40^{\circ}$, determine (a) the required magnitude of the force \mathbf{P} if the resultant of the three forces is to be vertical, (b) the corresponding magnitude of the resultant.

SOLUTION

$$
\begin{align*}
R_{x} & =\xrightarrow{+} \Sigma F_{x}=P+(200 \mathrm{lb}) \sin 40^{\circ}-(400 \mathrm{lb}) \cos 40^{\circ} \\
R_{x} & =P-177.860 \mathrm{lb} \tag{1}\\
R_{y} & =+\searrow \Sigma F_{y}=(200 \mathrm{lb}) \cos 40^{\circ}+(400 \mathrm{lb}) \sin 40^{\circ} \\
R_{y} & =410.32 \mathrm{lb} \tag{2}
\end{align*}
$$

(a) For \mathbf{R} to be vertical, we must have $R_{x}=0$.

Set
$R_{x}=0$ in Eq. (1)

$$
\begin{aligned}
0 & =P-177.860 \mathrm{lb} \\
P & =177.860 \mathrm{lb}
\end{aligned}
$$

$$
P=177.9 \mathrm{lb}
$$

(b) Since \mathbf{R} is to be vertical:

$$
R=R_{y}=410 \mathrm{lb} \quad R=410 \mathrm{lb}
$$

SOLUTION

Free-Body Diagram

Force Triangle

Law of sines:

$$
\frac{F_{A C}}{\sin 35^{\circ}}=\frac{T_{B C}}{\sin 50^{\circ}}=\frac{300 \mathrm{lb}}{\sin 95^{\circ}}
$$

(a)

$$
F_{A C}=\frac{300 \mathrm{lb}}{\sin 95^{\circ}} \sin 35^{\circ}
$$

$$
F_{A C}=172.7 \mathrm{lb}
$$

(b)

$$
T_{B C}=\frac{300 \mathrm{lb}}{\sin 95^{\circ}} \sin 50^{\circ}
$$

$$
T_{B C}=231 \mathrm{lb}
$$

SOLUTION

(a)

$$
\Sigma \mathbf{F}_{x}=0: \quad-\frac{12}{13} T_{A C}+\frac{4}{5}(360 \mathrm{~N})=0
$$

$$
T_{A C}=312 \mathrm{~N}
$$

(b)

$$
\begin{array}{rlr}
\Sigma \mathbf{F}_{y}=0: & \frac{5}{13}(312 \mathrm{~N})+T_{B C}+\frac{3}{5}(360 \mathrm{~N})-480 \mathrm{~N}=0 & \\
T_{B C}=480 \mathrm{~N}-120 \mathrm{~N}-216 \mathrm{~N} & T_{B C}=144.0 \mathrm{~N}
\end{array}
$$

SOLUTION

Free-Body Diagram: C

Force Triangle

Force triangle is isosceles with

$$
\begin{aligned}
2 \beta & =180^{\circ}-85^{\circ} \\
\beta & =47.5^{\circ}
\end{aligned}
$$

(a)
$P=2(800 \mathrm{~N}) \cos 47.5^{\circ}=1081 \mathrm{~N}$
Since $P>0$, the solution is correct.
(b)
$\alpha=180^{\circ}-50^{\circ}-47.5^{\circ}=82.5^{\circ}$

$$
P=1081 \mathrm{~N}
$$

$$
\alpha=82.5^{\circ}
$$

PROBLEM 2.133

The end of the coaxial cable $A E$ is attached to the pole $A B$, which is strengthened by the guy wires $A C$ and $A D$. Knowing that the tension in wire $A C$ is 120 lb , determine (a) the components of the force exerted by this wire on the pole, (b) the angles θ_{x}, θ_{y}, and θ_{z} that the force forms with the coordinate axes.

SOLUTION

(a)

$$
\begin{array}{ll}
F_{x}=(120 \mathrm{lb}) \cos 60^{\circ} \cos 20^{\circ} & \\
F_{x}=56.382 \mathrm{lb} & F_{x}=+56.4 \mathrm{lb} \\
F_{y}=-(120 \mathrm{lb}) \sin 60^{\circ} & \\
F_{y}=-103.923 \mathrm{lb} & F_{y}=-103.9 \mathrm{lb} \\
F_{z}=-(120 \mathrm{lb}) \cos 60^{\circ} \sin 20^{\circ} & \\
F_{z}=-20.521 \mathrm{lb} & F_{z}=-20.5 \mathrm{lb}
\end{array}
$$

$\cos \theta_{x}=\frac{F_{x}}{F}=\frac{56.382 \mathrm{lb}}{120 \mathrm{lb}}$

$$
\theta_{x}=62.0^{\circ}
$$

$\cos \theta_{y}=\frac{F_{y}}{F}=\frac{-103.923 \mathrm{lb}}{120 \mathrm{lb}}$

$$
\theta_{y}=150.0^{\circ}
$$

$\cos \theta_{z}=\frac{F_{z}}{F}=\frac{-20.52 \mathrm{lb}}{120 \mathrm{lb}}$

$$
\theta_{z}=99.8^{\circ}
$$

SOLUTION

$$
\begin{aligned}
\overrightarrow{C A} & =-(900 \mathrm{~mm}) \mathbf{i}+(600 \mathrm{~mm}) \mathbf{j}-(920 \mathrm{~mm}) \mathbf{k} \\
C A & =\sqrt{(900 \mathrm{~mm})^{2}+(600 \mathrm{~mm})^{2}+(920 \mathrm{~mm})^{2}} \\
& =1420 \mathrm{~mm} \\
\mathbf{T}_{C A} & =T_{C A} \lambda_{C A} \\
& =T_{C A} \frac{\overrightarrow{C A}}{C A} \\
\mathbf{T}_{C A} & =\frac{2130 \mathrm{~N}}{1420 \mathrm{~mm}}[-(900 \mathrm{~mm}) \mathbf{i}+(600 \mathrm{~mm}) \mathbf{j}-(920 \mathrm{~mm}) \mathbf{k}] \\
& =-(1350 \mathrm{~N}) \mathbf{i}+(900 \mathrm{~N}) \mathbf{j}-(1380 \mathrm{~N}) \mathbf{k} \\
& \left(T_{C A}\right)_{x}=-1350 \mathrm{~N}, \quad\left(T_{C A}\right)_{y}=900 \mathrm{~N}, \quad\left(T_{C A}\right)_{z}=-1380 \mathrm{~N}
\end{aligned}
$$

PROBLEM 2.135

Find the magnitude and direction of the resultant of the two forces shown knowing that $P=600 \mathrm{~N}$ and $Q=450 \mathrm{~N}$.

SOLUTION

$$
\begin{array}{rlrl}
\mathbf{P} & =(600 \mathrm{~N})\left[\sin 40^{\circ} \sin 25^{\circ} \mathbf{i}+\cos 40^{\circ} \mathbf{j}+\sin 40^{\circ} \cos 25^{\circ} \mathbf{k}\right] & & \\
& =(162.992 \mathrm{~N}) \mathbf{i}+(459.63 \mathrm{~N}) \mathbf{j}+(349.54 \mathrm{~N}) \mathbf{k} & \\
\mathbf{Q} & =(450 \mathrm{~N})\left[\cos 55^{\circ} \cos 30^{\circ} \mathbf{i}+\sin 55^{\circ} \mathbf{j}-\cos 55^{\circ} \sin 30^{\circ} \mathbf{k}\right] & & \\
& =(223.53 \mathrm{~N}) \mathbf{i}+(368.62 \mathrm{~N}) \mathbf{j}-(129.055 \mathrm{~N}) \mathbf{k} & & \\
\mathbf{R} & =\mathbf{P}+\mathbf{Q} & & R=940 \mathrm{~N} \\
& =(386.52 \mathrm{~N}) \mathbf{i}+(828.25 \mathrm{~N}) \mathbf{j}+(220.49 \mathrm{~N}) \mathbf{k} & \theta_{x}=65.7^{\circ} \\
R & =\sqrt{(386.52 \mathrm{~N})^{2}+(828.25 \mathrm{~N})^{2}+(220.49 \mathrm{~N})^{2}} & \\
& =940.22 \mathrm{~N} & & \theta_{y}=28.2^{\circ} \\
\cos \theta_{x} & =\frac{R_{x}}{R}=\frac{386.52 \mathrm{~N}}{940.22 \mathrm{~N}} & \theta_{z}=76.4^{\circ} \\
\cos \theta_{y} & =\frac{R_{y}}{R}=\frac{828.25 \mathrm{~N}}{940.22 \mathrm{~N}} & & \\
\cos \theta_{z} & =\frac{R_{z}}{R}=\frac{220.49 \mathrm{~N}}{940.22 \mathrm{~N}} &
\end{array}
$$

PROBLEM 2.136

A container of weight W is suspended from ring A. Cable $B A C$ passes through the ring and is attached to fixed supports at B and C. Two forces $\mathbf{P}=P \mathbf{i}$ and $\mathbf{Q}=Q \mathbf{k}$ are applied to the ring to maintain the container in the position shown. Knowing that W $=376 \mathrm{~N}$, determine P and Q. (Hint: The tension is the same in both portions of cable $B A C$.)

SOLUTION

$$
\begin{aligned}
\mathbf{T}_{A B} & =T \boldsymbol{\lambda}_{A B} \\
& =T \frac{\overline{A B}}{A B} \\
& =T \frac{(-130 \mathrm{~mm}) \mathbf{i}+(400 \mathrm{~mm}) \mathbf{j}+(160 \mathrm{~mm}) \mathbf{k}}{450 \mathrm{~mm}} \\
& =T\left(-\frac{13}{45} \mathbf{i}+\frac{40}{45} \mathbf{j}+\frac{16}{45} \mathbf{k}\right) \\
\mathbf{T}_{A C} & =T \lambda_{A C} \\
& =T \frac{\overline{A C}}{A C} \\
& =T \frac{(-150 \mathrm{~mm}) \mathbf{i}+(400 \mathrm{~mm}) \mathbf{j}+(-240 \mathrm{~mm}) \mathbf{k}}{490 \mathrm{~mm}} \\
& =T\left(-\frac{15}{49} \mathbf{i}+\frac{40}{49} \mathbf{j}-\frac{24}{49} \mathbf{k}\right) \\
\Sigma F & =0: \quad \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{Q}+\mathbf{P}+\mathbf{W}=0
\end{aligned}
$$

Free-Body \boldsymbol{A} :

Setting coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$ equal to zero:
i: $-\frac{13}{45} T-\frac{15}{49} T+P=0 \quad 0.59501 T=P$
$\mathbf{j}: \quad+\frac{40}{45} T+\frac{40}{49} T-W=0 \quad 1.70521 T=W$
$\mathbf{k}: \quad+\frac{16}{45} T-\frac{24}{49} T+Q=0 \quad 0.134240 T=Q$

PROBLEM 2.136 (Continued)

Data:

$$
\begin{array}{rlrl}
W & =376 \mathrm{~N} & 1.70521 T=376 \mathrm{~N} & T=220.50 \mathrm{~N} \\
0.59501(220.50 \mathrm{~N}) & =P & & P=131.2 \mathrm{~N} \\
0.134240(220.50 \mathrm{~N}) & =Q & & Q=29.6 \mathrm{~N}
\end{array}
$$

SOLUTION

Free-Body Diagrams of Collars:

A:

B :

$$
\lambda_{A B}=\frac{\overrightarrow{A B}}{A B}=\frac{-x \mathbf{i}-(20 \mathrm{in} .) \mathbf{j}+z \mathbf{k}}{25 \mathrm{in} .}
$$

Collar A :

$$
\Sigma \mathbf{F}=0: \quad P \mathbf{i}+N_{y} \mathbf{j}+N_{z} \mathbf{k}+T_{A B} \lambda_{A B}=0
$$

Substitute for $\lambda_{A B}$ and set coefficient of \mathbf{i} equal to zero:

$$
\begin{equation*}
P-\frac{T_{A B} x}{25 \text { in. }}=0 \tag{1}
\end{equation*}
$$

Collar B:

$$
\Sigma \mathbf{F}=0: \quad(60 \mathrm{lb}) \mathbf{k}+N_{x}^{\prime} \mathbf{i}+N_{y}^{\prime} \mathbf{j}-T_{A B} \boldsymbol{\lambda}_{A B}=0
$$

Substitute for $\lambda_{A B}$ and set coefficient of \mathbf{k} equal to zero:

$$
\begin{equation*}
60 \mathrm{lb}-\frac{T_{A B} z}{25 \mathrm{in} .}=0 \tag{2}
\end{equation*}
$$

(a)

$$
\begin{aligned}
x=9 \text { in. } \quad(9 \mathrm{in} .)^{2}+(20 \mathrm{in} .)^{2}+z^{2} & =(25 \mathrm{in} .)^{2} \\
z & =12 \mathrm{in} .
\end{aligned}
$$

From Eq. (2):
$\frac{60 \mathrm{lb}-T_{A B}(12 \mathrm{in} .)}{25 \mathrm{in} .}$

$$
T_{A B}=125.0 \mathrm{lb}
$$

(b) From Eq. (1):

$$
P=\frac{(125.0 \mathrm{lb})(9 \mathrm{in} .)}{25 \mathrm{in} .}
$$

$$
P=45.0 \mathrm{lb}
$$

SOLUTION

See Problem 2.137 for the diagrams and analysis leading to Equations (1) and (2) below:

$$
\begin{align*}
P=\frac{T_{A B} x}{25 \mathrm{in} .}=0 \tag{1}\\
60 \mathrm{lb}-\frac{T_{A B} z}{25 \mathrm{in.}}=0 \tag{2}
\end{align*}
$$

For $P=120 \mathrm{lb}$, Eq. (1) yields

$$
\begin{align*}
T_{A B} x & =(25 \mathrm{in} .)(20 \mathrm{lb}) \tag{1'}\\
T_{A B} z & =(25 \mathrm{in} .)(60 \mathrm{lb}) \\
\frac{x}{z} & =2 \tag{3}
\end{align*}
$$

From Eq. (2):

Now write

$$
\begin{equation*}
x^{2}+z^{2}+(20 \mathrm{in} .)^{2}=(25 \mathrm{in} .)^{2} \tag{4}
\end{equation*}
$$

Solving (3) and (4) simultaneously,

$$
\begin{aligned}
4 z^{2}+z^{2}+400 & =625 \\
z^{2} & =45 \\
z & =6.7082 \mathrm{in.} \\
x & =2 z=2(6.70 \\
& =13.4164 \mathrm{in} .
\end{aligned}
$$

$$
\text { From Eq. (3): } \quad x=2 z=2(6.7082 \text { in.) }
$$

$$
x=13.42 \mathrm{in} ., \quad z=6.71 \mathrm{in} .
$$

PROBLEM 2F1

Two cables are tied together at C and loaded as shown. Draw the free-body diagram needed to determine the tension in $A C$ and $B C$.

SOLUTION

Free-Body Diagram of Point C :

$W=(1600 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$
$W=15.6960\left(10^{3}\right) \mathrm{N}$
$W=15.696 \mathrm{kN}$

SOLUTION

Free-Body Diagram of Point E:

SOLUTION

Free-Body Diagram of Point A :

SOLUTION

Free-Body Diagram of Point B :

$$
\begin{aligned}
& W_{E}=250 \mathrm{~N}+765 \mathrm{~N}=1015 \mathrm{~N} \\
& \theta_{A B}=\tan ^{-1} \frac{8.25}{14}=30.510^{\circ} \\
& \theta_{B C}=\tan ^{-1} \frac{10}{24}=22.620^{\circ}
\end{aligned}
$$

Use this free body to determine $T_{A B}$ and $T_{B C}$.

Free-Body Diagram of Point C :

$\theta_{C D}=\tan ^{-1} \frac{1.1}{6}=10.3889^{\circ}$
Use this free body to determine $T_{C D}$ and W_{F}.
Then weight of skier W_{S} is found by

$$
W_{S}=W_{F}-250 \mathrm{~N}
$$

SOLUTION

Free-Body Diagram of Point \boldsymbol{A} :

SOLUTION

Free-Body Diagram of Point A :

$$
\begin{aligned}
W & =(120 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =1177.2 \mathrm{~N}
\end{aligned}
$$

SOLUTION

Free-Body Diagram of Point C :

PROBLEM 2.F8

A transmission tower is held by three guy wires attached to a pin at A and anchored by bolts at B, C, and D. Knowing that the tension in wire $A B$ is 630 lb , draw the free-body diagram needed to determine the vertical force \mathbf{P} exerted by the tower on the pin at A.

SOLUTION

Free-Body Diagram of point \boldsymbol{A} :

