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Preface

This solutions manual contains the solutions to all end-of-chapter problems in Water-
Resources Engineering, Third Edition. This manual should be treated as confidential
by course instructors and/or their trustees, such as teaching assistants and graders.
Unauthorized use of this solutions manual by students would normally be considered
as cheating.

This solutions manual contains two sets of solutions: conventional solutions and
Mathcad® solutions. The conventional solutions to all end-of-chapter problems were
prepared by Dr. David A. Chin, using a calculator and/or electronic spreadsheet.
Mathcad® solutions to selected problems were prepared by Dr. Dixie M. Griffin Jr.
exclusively using Mathcad® software. Depending on the preference of the course
instructor, students could be asked to solve problems in either format. The
conventional solutions to all problems are presented first, and Mathcad® solutions to
selected problems are presented thereafter.
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Chapter 1

Introduction

1.1. The mean annual rainfall in Boston is approximately | 1050 mm |, and the mean annual evap-
otranspiration is in the range of | 380-630 mm | (USGS). On the basis of rainfall, this indicates
a climate. The mean annual rainfall in Santa Fe is approximately and

the mean annual evapotranspiration is . On the basis of rainfall, this indicates

an climate.
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Chapter 2

Fundamentals of Flow in Closed
Conduits

2.1. D; =0.1m, Dy =0.15m, V1 =2 m/s, and

A _ZD% = %(0.1)2 = 0.007854 m?
As :%Dg = %(0.15)2 — 0.01767 m?

Volumetric flow rate, @, is given by

Q = A1V} = (0.007854)(2) = |0.0157 m3 /s

According to continuity,
AV = AV =Q

Q00157
Vo= 2, = Dotrer L0889 m/s

At 20°C, the density of water, p, is 998 kg/m3, and the mass flow rate, 1, is given by

1 = pQ = (998)(0.0157) =

2.2. From the given data: D; = 200 mm, Dy = 100 mm, V; = 1 m/s, and

Therefore

A = %D% = %(0.2)2 — 0.0314 m?
Ay = %D% = %(0.1)2 — 0.00785 m?

The flow rate, )1, in the 200-mm pipe is given by
Q1 = A1V; = (0.0314)(1) = 0.0314 m3/s
and hence the flow rate, @2, in the 100-mm pipe is

Q1 0.0314

QQZT 9

0.0157 m3/s
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The average velocity, Vs, in the 100-mm pipe is

Q2  0.0157
V = — = = 2
7 Ay 0.00785
2.3. The velocity distribution in the pipe is
2
o =1 1= (3] )
and the average velocity, V, is defined as
_ 1
g dA 2
V=]V 2)
where
A =7R? and dA = 27rdr (3)
Combining Equations 1 to 3 yields
-1 (F 72 2V [ [ B3 2V [R*? R*
VWRa/O V()[l_(R) ]2””““32 UO ”““‘/0 der} T [2‘432]
_2W R W
R4 |2
The flow rate, @, is therefore given by
2
Q= AV — TRV,
2
2.4.
1 5 4 R 2r2 ot
8 [ [* R ops B oo 8 [R* R' RS
= — dr — —d —dr| = = | — — — + —
R [/0 N > “L/O R T} R {2 2R2+6R4]

4
3

2.5. D=0.2m,Q = 0.06 m3/s, L = 100 m, p; = 500 kPa, py = 400 kPa, v = 9.79 kN /m3.

D 02

e 4 OT :506(())5 rIZ100
Ah:%—%—wzm‘“ﬂ

o ’YRLAh _ (979 x 10?%%"05)(10'2) —[49.9 N/m?

D? 2)2
A= 77(04 S 0.0314 m?
= % - 0962(134 =191 m/s
Fe 5‘7;02 _ (9;;)4(91-%)1)2 =[0.11
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2.6. T'=20°C, V =2m/s, D = 0.25 m, horizontal pipe, ductile iron. For ductile iron pipe, ks =

0.26 mm, and
ks 0.26
— = —— =0.00104
D= 250 0.0010
Re — pV D _ (998.2)(2)(0.25) _ 4081 x 10°

7 (1.002 x 10-3)

From the Moody diagram:

’ f =10.0202 (pipe is smooth) ‘

Using the Colebrook equation,

1 (ks/D+ 2.51>
VI T\ 37 TRevT

Substituting for ks/D and Re gives

e (000104 251
VI B\ T 37 T aogl < 105yT

By trial and error leads to

Using the Swamee-Jain equation,

1 _21og [k:s/D 5.74 ]
\/7 3.7 Re%?
_ 2log [0.00104 N 5.74 ]
3.7 (4.981 x 105)0-9

which leads to

The head loss, hy, over 100 m of pipeline is given by

2 2
LV 00,100 (2)

Z__—y. —_— =1.66
D 2g 0.25 2(9.81) o

hy=f
Therefore the pressure drop, Ap, is given by

Ap = vhy = (9.79)(1.66) = [ 16.3 kPa

If the pipe is 1 m lower at the downstream end, f would not change, but the pressure drop,
Ap, would then be given by

Ap = ~y(hs —1.0) = 9.79(1.66 — 1) = | 6.46 kPa
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2.7. From the given data: D = 25 mm, ks = 0.1 mm, # = 10°, p; = 550 kPa, and L = 100 m. At
20°C, v = 1.00 x 1076 m?/s, v = 9.79 kN/m?, and

ks 0.1
D9 0.004
A= %DQ = %(0.025)2 =4.909 x 10~* m?
L @ 100 Q2 o
h=Ip = = 8.46 x 10
= D242 = 15,025 209.81) (4909 x 10-1)2 x 10°fQ

The energy equation applied over 100 m of pipe is

V2 V2
L = sy
v 29 v 2g

which simplifies to

p2 =p1 — (22 — 21) — Yhy
p2 = 550 — 9.79(100sin 10°) — 9.79(8.46 x 10° fQ?)
P2 = 380.0 — 8.28 x 107 fQ?

(a) For Q = 2 L/min = 3.333 x 107° m3/s,

. Q  3333x107°
V= A= 1909 <103 — 0.06790 m/s

VD (0.06790)(0.025)

R
¢ v 1x10-6

= 1698

Since Re < 2000, the flow is laminar when ) = 2 L/min. Hence,

64 64
[ = 5o = Taog = 003770

p2 = 380.0 — 8.28 x 10%(0.03770)(3.333 x 107°)? = 380 kPa

Therefore, when the flow is 2 L/min, the pressure at the downstream section is | 380 kPa |.
For @ = 20 L/min = 3.333 x 10~* m?/s,

Q3333 x107*
V= A= 1909 % 103 = 0.6790 m/s

VD (0.6790)(0.025)
v 1x 106

Since Re > 5000, the flow is turbulent when @ = 20 L/min. Hence,

0.25 0.25

/= /D, 574 \12 [log (2004 s 2~ 00342
[108;( = + Réo'g)} [log (%% + Tas500s) ]

p2 = 380.0 — 8.28 x 10°(0.0342)(3.333 x 10~%)% = 349 kPa

Re = 16980

Therefore, when the flow is 2 L/min, the pressure at the downstream section is | 349 kPa |.
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(b) Using the Colebrook equation with = 20 L/min,

1 k/D | 251 ] , [0.004 L 251 }
R _ 9l
JT 37 " RevJ &1737 T 16980yF

which yields | f = 0.0337 | Comparing this with the Swamee-Jain result of | f = 0.0342

indicates a difference of , which is more than the 1% claimed by Swamee-Jain.

= —QIOg[

2.8. The Colebrook equation is given by

L (Bs/D 251
N °g< 3.7 +Re\/f>

Inverting and squaring this equation gives

B 0.25
~ {log[(ks/D)/3.7 + 2.51/(Rev/f)]}2

f

This equation is “slightly more convenient” than the Colebrook formula since it is quasi-
explicit in f, whereas the Colebrook formula gives 1/+/f.

2.9. The Colebrook equation is preferable since it provides greater accuracy than interpolating
from the Moody diagram.

2.10. D = 0.5 m, p; = 600 kPa, Q = 0.50 m3/s, 21 = 120 m, 25 = 100 m, v = 9.79 kN/m?3, L =
1000 m, ks (ductile iron) = 0.26 mm,

A= %DQ = %(0.5)2 = 0.1963 m?
0.50
V=4~ Oage3 ~ 2P0 m/s
Using the Colebrook equation,
1 ky/D 251
== 9] +
N/ ( 3.7 Reﬁ)

where ks/D = 0.26/500 = 0.00052, and at 20°C

D 9.55)(0.
Re— AVD _ (998)(255)(05) _ o0 06
L 1.00 x 10-3

Substituting ks/D and Re into the Colebrook equation gives

g (00052 251
VI %\ T3 T2t x 1057

which leads to
f=0.0172
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Applying the energy equation

V2 V2
O =B 2y
v 29 v 29

Since V1 = Va, and hy is given by the Darcy-Weisbach equation, then the energy equation
can be written as

b1 b2
—+tzan="+2n+f=7
¥ v D 2g

Substituting known values leads to

600 P2 1000 (2.55)2
—— 4120 = ==~ 4100 + 0.0172——
079 9.9 10T 0.5 2(9.81)

p2 = 684 kPa

If p is the (static) pressure at the top of a 30 m high building, then

which gives

p = pa — 30y = 684 — 30(9.79) = 390 kPa

’This (static) water pressure is adequate for service. ‘

2.11. The head loss, hy, in the pipe is estimated by

hf = <pmai“ + Zmain) - (poutlet + Zoutlet)
Y Y

where P, = 400 kPa, 2., = 0 m, pouue: = 0 kPa, and z,ue, = 2.0 m. Therefore,

400
hy=(on+0) —(0+2.0) =38.9
! (9.79+> (0+2.0) o

Also, since D = 25 mm, L = 20 m, ks = 0.15 mm (from Table 2.1), v = 1.00 x 107 m?/s
(at 20°C), the combined Darcy-Weisbach and Colebrook equation (Equation 2.43) yields,

Dh;. (kD 1.774
Q= —0.9650% /920y, (Fs/D LTV
L 3.7 Dy/gDh;/L

(9.81)(0.025)(38.9) | [0.15/25 1.774(1.00 x 107)
20 3.7 " (0.025),/(9.81)(0.025)(38.9),/20

= —0.965(0.025)2\/

= 0.00265 m?/s = 2.65 L/s

The faucet can therefore be expected to deliver |2.65 L/s| when fully open.

2.12. From the given data: @ = 300 L/s = 0.300 m3/s, L = 40 m, and hy = 45 m. Assume that
v = 1075 m?/s (at 20°C) and take ks = 0.15 mm (from Table 2.1). Substituting these data
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into Equation 2.43 gives

Dhy. (kD 1.784
Q = —0.965D%/ L= 1 /D 1784
L 3.7 ' Dy\/gDhs/L

(9.81)D(45) 0.00015 1.784(107°)
(40) 37D D,/(9.81)D(45)/(40)

0.2 = —0.965D>

This is an implicit equation in D that can be solved numerically to yield | D = 166 mm |.

2.13. Since ks = 0.15 mm, L = 40 m, @ = 0.3 m3/s, hy = 45 m, v = 1.00 x 107° m?/s, the
Swamee-Jain approximation (Equation 2.44 gives

4.75 27004
D 066 H25<L@2> +VQ94<1>>52
s ghy ghy

s 5y 0.04
0.6 {(0‘00015)1.25 [808)1(5)(2;} 4 (1.00 x 1079)(0.3)%4 [40(45)} 5 2}

(9.81)
=0.171 m =

The calculated pipe diameter (171 mm) is about 3% higher than calculated by the Colebrook
equation (166 mm).

2.14. The kinetic energy correction factor, «, is defined by

3 3
/pvdA:oszA
) 2
or footdA
v2d
= "pra M

Using the velocity distribution in Problem 2.3 gives
R 212
r
/AUSdA:/O I [1— (E) ] 27y dr
R 2 4 6
_ 3 _3(r N (L
_QWW%A [1 3(5) +3(L) (R)}rdr
R 3 5 7
3r 3r T
_ 3
_%%AP_W+M_WPT

r2 3rd r6 r8 R
— V3 | — — _
™ {2 1R TRt 8R6]0

1 3 1 1
=RV |- - S+ - — <
" 0[2 172 8]
TRV
== (2)
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The average velocity, V', was calculated in Problem 2.3 as

Vo
V=—
2
hence 5 -
\Z R*V;
V3A = (;) TR? = WTO (3)

Combining Equations 1 to 3 gives

_ mRVP/4

CTIRVER T
2.15. The kinetic energy correction factor, «, is defined by
3dA
o= Javidd (1)
V3A

Using the given velocity distribution gives
3

R
374 — 3(1_T\7
/AvdA—/O V0<1 R> 2mr dr

3

:271'1/03/0R<1—;)77“dr (2)

To facilitate integration, let

r
=1—-— 3
r=1-1 3)

which gives
r=R(l—x) (4)
dr = —R dx (5)

Combining Equations 2 to 5 gives

1
/ v3dA = 271'1/03/ x%R(l —z)(—R)dx
A

0
1 1
= 27TR2V03/ x%(l —x)dx = 27rR2V03/ (x% — a:170)dx
0 0
7 10 7 1]t
_ 2¢3 | 0 0 0 17
—271'RV0[10:C7 17x7]0
= 0.5767 R*V;} (6)
The average velocity, V, is given by (using the same substitution as above)
V= 1/ v dA
AJa
I T+ 2Vy [0 1
:7TR2/0 Vo(l—ﬁ) 2mr dT:RQ/l z7R(1 — x)(—R)dx
1 1 8 7 15 1
= 2V0/ (x7 —x7)dx =2V} [z? - x?]
0 15 0
= 0.817V (7)

10
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Using this result,
V3A = (0.817V))*1R? = 0.545m R*V (8)

Combining Equations 1, 6, and 8 gives
0.576m R2V
= = -1.06
“ T 05457 R2VP

The momentum correction factor, 3, is defined by

_ N v2dA
b= ?)
In this case,
AV? = 7R?(0.817Vp)? = 0.667r R*V? (10)

and

R 2
274 2(1_"\7
/Av dA—/O Vo (1 R) 2mr dr

0 1
= 27TVO2/ x%R(l —z)(—R)dx = 27TR2V02/ (x% - x%)dx
1 0
=2rR°Vy |27 — —x7 | =0.6817R"V; (11)
9 16 0
Combining Equations 9 to 11 gives
0.6817 R2V;2
=—————- =102
p 0.6677 R2V;?
2.16. The kinetic energy correction factor, «, is defined by
3dA
o= JavdA (1)
V3A
Using the velocity distribution given by Equation 2.73 gives
R 3
3 3 "\~
UdA:/ V(l—— 27r dr
/A 0 0 R)
s (B 3
:27TV/ (1——)nrdr (2)
o/ R
Let r
=1—-— 3
p=1- 3)
which gives
r=R(1l—x) (4)
dr = —R dz (5)

11
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Combining Equations 2 to 5 gives

1
/ vPdA = 27TV03/ znR(1 — z)(~R)dw
A 0

1 1
= 27TR2V03/ :1:%(1 —x)dx = 27rR2V03/ (:c% —xz n )dx
0 0

1
— oAV | Dt o e
TRV, [3+n$ 3+2nx .
2n?
— RV 6
B+n)(B+2n) 0 (6)

The average velocity, V, is given by

V:;/Av dA
:7:]#/0}%%(1—;)}127Tr dr:i%vg/loxiR(l—x)(—R)d:r
=2V /Ol(xvll —xHTn)dx =2V L anHTn 1 _:Lan% )
2
- [(1+n§1(11+2n)} Vo @)

Using this result,

8n’
(1+n)3(1+ 2n)3

o2n?
(1+n)(1+2n

3
VA = [ )] VigmR? = TRV (8)

Combining Equations 1, 6, and 8 gives
2n? 2773
(3+n)?3+2n) TRV
8nb 3
(1+n)3?1+2n)3 TRV

(14+n)3(1+2n)3
4n*(3+n)(3 + 2n)

Putting n = 7 gives |a = 1.06], the same result obtained in Problem 2.15.

2.17. p1 = 30 kPa, po = 500 kPa, therefore head, h,, added by pump is given by

y =22 20 (480 m]

v

Power, P, added by pump is given by

P =~Qh, = (9.79)(Q)(48.0) =|470 kW per m3/s

12
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2.18. Q = 0.06 m3/s, D = 0.2 m, ks = 0.9 mm (riveted steel), ks/D = 0.9/200 = 0.00450, for 90°
bend K = 0.3, for the entrance K = 1.0, at 20°C p = 998 kg/m?, and p = 1.00 x 1073 Pa-s,
therefore

A="p?="(0.2)2 = 0.0314 m?

4 A
O  0.06
. - ~1.91
A= 00314 Lot m/s
pVD  (998)(1.91)(0.2) ;
R = = - == . 1 ].
°= 100 x 103 o8t <10

Substituting ks/D and Re into the Colebrook equation gives

1 9l <0.00450 . 2.51 )

VI %\ 37 T 381 105F
which leads to

f=10.0297
Minor head loss, h,,, is given by
(1.91)
hm = K (1.0+0.3 =0.242
=2 +03)30981) o

If friction losses, hs, account for 90% of the total losses, then

Lv?
= 9h,
fD 29
which means that ( )2
L (1.91
0.0297— = 9(0.242
0.22(9.81) ( )

Solving for L gives
L=789m

For pipe lengths shorter than the length calculated in this problem, the word “minor” should
not be used.

2.19. From the given data: pg = 480 kPa, vg = 5 m/s, zp = 2.44 m, D = 19 mm = 0.019 m, L =
40 m, z; = 7.62 m, and Y K,, = 3.5. For copper tubing it can be assumed that ks = 0.0023
mm. Applying the energy and Darcy-Weisbach equations between the water main and the
faucet gives

2
@—i—zo—hf—hm:ﬂ—i—v—l—km
Y Y2
480 f(40) o2 v? 0 v?
2.44 — —35 =+ 4+ 7.62
979 " 0.0192(9.81)  “°2(981) 5 2(9.81) T

which simplifies to
6.622

~ /I07.3f — 0.2141

13
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The Colebrook equation, with v = 1 x 107% m?/s gives

L [ ke, 28 ]
JI %% |37D T RevT
g | 00025 251 ]
- v(0.019
NG 37(19) © w000)
1 [ 1.321 x 1074
— = —2log |3.556 x 1077 + ] (2)
vii i v/ f

Combining Equations 1 and 2 gives

1.995 x 107°/107.3f — 0.2141
— —21l0g |3.556 x 107 + < 107°VI07.31 ]

1
VT Vi

which yields
f=10.0189
Substituting into Equation 1 yields

6.622
v =
1/107.3(0.0189) — 0.2141

Q=Av= (20.0192> (4.92) = 0.00139 m®/s = [1.39 L/s (= 22 gpm)|

This flow is | very high | for a faucet. The flow would be if other faucets are open,

this is due to increased pipe flow and frictional resistance between the water main and the
faucet.

=4.92 m/s

2.20. From the given data: z; = —1.5 m, z9 = 40 m, p; = 450 kPa, >k = 10.0, Q@ = 20 L /s = 0.02
m?/s, D = 150 mm (PVC), L = 60 m, T = 20°C, and py = 150 kPa. The combined energy
and Darcy-Weisbach equations give

b1 V12 b2 V22 fL v?
LR O h, =224+ 2 L k| — 1
S gy tath 7+2g+z2+D+Z % (1)
where 0 0.09
Vi=WVo=V= i 7ﬂ(0‘.15)2 =113 m/s (2)
1
At 20°C, v = 1.00 x 107% m2/s, and
D 1.1 1
Re = VD _ (1.13)(0.15) 169500

v 1.00x10-6

Since PVC pipe is smooth (ks = 0), the friction factor, f, is given by

L e (251 _ 2.51
77 =20 (z) = 25 (a7

14
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