Correction of the exercises from the book A Wavelet Tour of Signal Processing

Gabriel Peyré
Ceremade
Université Paris-Dauphine gabriel.peyre@ceremade.dauphine.fr

September 7, 2010

Abstract

These corrections refer to the $3^{\text {rd }}$ edition of the book A Wavelet Tour of Signal Processing - The Sparse Way by Stéphane Mallat, published in December 2008 by Elsevier. If you find mistakes or imprecisions in these corrections, please send an email to Gabriel Peyré (gabriel.peyre@ceremade.dauphine.fr). More information about the book, including how to order it, numerical simulations, and much more, can be find online at wavelet-tour.com.

1 Chapter 2

Exercise 2.1. For all t, the function $\omega \mapsto e^{-i \omega t} f(t)$ is continuous. If $f \in \mathrm{~L}^{1}(\mathbb{R})$, then for all ω, $\left|e^{-i \omega t} f(t)\right| \leqslant|f(t)|$ which is integrable. One can thus apply the theorem of continuity under the integral sign \int which proves that \hat{f} is continuous.

If $\hat{f} \in \mathrm{~L}^{1}(\mathbb{R})$, using the inverse Fourier formula (2.8) and a similar argument, one proves that f is continuous.
Exercise 2.2. If $\int|h|=+\infty$, for all $A>0$ there exists $B>0$ such that $\int_{-B}^{B}|h|>A$. Taking $f(x)=1_{[-A, A]} \operatorname{sign}(h(-x))$ which is integrable and bounded by 1 shows that

$$
f \star h(0)=\int_{-B}^{B} \operatorname{sign}(h(t)) h(t) \mathrm{d} t>A .
$$

This shows that the operator $f \mapsto f \star h$ is not bounded on L^{∞}, and thus the filter h is unstable.
Exercise 2.3. Let $f_{u}(t)=f(t-u)$, by change of variable $t-u \rightarrow t$, one gets

$$
\hat{f}_{u}(\omega)=\int f(t-u) e^{-i \omega t} \mathrm{~d} t=\int f(t) e^{-i \omega(t+u)} \mathrm{d} t=e^{-i \omega u} \hat{f}(\omega)
$$

Let $f_{s}(t)=f(t / s)$, with $s>0$, by change of variable $t / s \mapsto t$, one get

$$
\hat{f}_{s}(\omega)=\int f(t / s) e^{-i \omega t} \mathrm{~d} t=\int f(t) e^{-i \omega s t}|s| \mathrm{d} t=|s| \hat{f}(s \omega)
$$

Let f by C^{1} and $g=f^{\prime}$, the by integration by parts, since $f(t) \rightarrow 0$ where $|t| \rightarrow+\infty$,

$$
\hat{g}(\omega)=\int f^{\prime}(t) e^{-i \omega t} \mathrm{~d} t=-\int f(t)(-i \omega) e^{-i \omega t} \mathrm{~d} t=(i \omega) \hat{f}(\omega)
$$

Exercise 2.4. One has

$$
f_{r}(t)=\operatorname{Re}[f(t)]=\left[f(t)+f^{*}(t)\right] / 2 \quad \text { and } \quad f_{i}(t)=\operatorname{Ima}[f(t)]=\left[f(t)-f^{*}(t)\right] / 2
$$

so that

$$
\begin{aligned}
\hat{f}_{r}(\omega) & =\int \frac{f(t)+f^{*}(t)}{2} e^{-i \omega t} \mathrm{~d} t=\hat{f}(\omega) / 2+\operatorname{Conj}\left(\int f(t) e^{i \omega t} \mathrm{~d} t\right) / 2 \\
& =\left[\hat{f}(\omega)+\hat{f}^{*}(-\omega)\right] / 2
\end{aligned}
$$

where $\operatorname{Conj}(a)=a^{*}$ is the complex conjugate. The same computation leads to

$$
\hat{f}_{i}(\omega)=\left[\hat{f}(\omega)-\hat{f}^{*}(-\omega)\right] / 2 .
$$

Exercise 2.5. One has

$$
\hat{f}(0)=\int f(t) \mathrm{d} t=0
$$

If $f \in \mathrm{~L}^{1}(\mathbb{R})$, one can apply the theorem of derivation under the integral sign \int and get

$$
\frac{\mathrm{d}}{\mathrm{~d} \omega} \hat{f}(\omega)=\int-i t f(t) e^{-i \omega t} \mathrm{~d} t \quad \Longrightarrow \quad \hat{f}^{\prime}(0)=-i \int t f(t) \mathrm{d} t=0 .
$$

Exercise 2.6. If $f=1_{[-\pi, \pi]}$ then one can verify that

$$
\hat{f}(\omega)=\frac{2 \sin (\pi \omega)}{\omega} .
$$

It result that

$$
\int \frac{\sin (\pi \omega)}{\pi \omega}=\frac{1}{2 \pi} \int \hat{f}(\omega) \mathrm{d} \omega=f(0)=1 .
$$

If $g=1_{[-1,1]}$ then $\hat{g}(\omega) / 2=\sin (\omega) / \omega$. The inverse Fourier transform of $\hat{g}(\omega)^{3}$ is $g \star g \star g(t)$ so

$$
\int \frac{\sin ^{3}(\omega)}{\omega^{3}} \mathrm{~d} \omega=\frac{1}{8} \int \hat{g}(\omega)^{3} \mathrm{~d} \omega=\frac{2 \pi}{8} g \star g \star g(0)=\frac{3 \pi}{4},
$$

where we used the fact that

$$
g \star g \star g(0)=\int_{-1}^{1} h(t) \mathrm{d} t=3
$$

where h is a piecewise linear hat function with $h(0)=2$.
Exercise 2.7. Writing $u=a-i b$, and differentiating under the integral sign \int, one has

$$
f^{\prime}(\omega)=\int-i t e^{-u t^{2}} e^{-i \omega t} \mathrm{~d} t
$$

By integration by parts, one gets an ordinary differential equation

$$
f^{\prime}(\omega)=\frac{-\omega}{2 u} \hat{f}(\omega)
$$

whose solution is

$$
f(\omega)=K e^{-\frac{\omega^{2}}{4 u}}
$$

for some constant $K=\hat{f}(0)$. Using a switch from Euclidean coordinates to polar coordinates $(x, y) \rightarrow(r, \theta)$ which satisfies $\mathrm{d} x \mathrm{~d} y=r \mathrm{~d} r \mathrm{~d} \theta$, one gets

$$
\begin{aligned}
K^{2} & =\int e^{-u x^{2}} \mathrm{~d} x \int e^{-u y^{2}} \mathrm{~d} y=\iint e^{-u\left(x^{2}+y^{2}\right)} \mathrm{d} x \mathrm{~d} y \\
& =\int_{0}^{2 \pi} \int_{0}^{+\infty} e^{-u r^{2}} r \mathrm{~d} r \mathrm{~d} \theta=2 \pi \int_{0}^{+\infty} r e^{-u r^{2}} \mathrm{~d} r=\frac{\pi}{u}
\end{aligned}
$$

which gives the result.
Exercise 2.8. If f is \mathbf{C}^{1} with a compact support, with an integration by parts we get

$$
\hat{f}(\omega)=\frac{1}{i \omega} \int f^{\prime}(t) e^{-i \omega t} \mathrm{~d} t
$$

so that

$$
|\hat{f}(\omega)| \leqslant \frac{C}{\omega} \quad \text { with } \quad C=\int\left|f^{\prime}(t)\right| \mathrm{d} t<+\infty
$$

which proves that $f(\omega) \rightarrow 0$ when $|\omega| \rightarrow+\infty$.
Let $f \in \mathbf{L}^{1}(\mathbb{R})$ and $\varepsilon>0$. Since \mathbf{C}^{1} functions are dense in $\mathbf{L}^{\mathbf{1}}(\mathbb{R})$, one can find g such that $\int|f-g| \leqslant \varepsilon / 2$. Since $\hat{g}(\omega) \rightarrow 0$ when $|\omega| \rightarrow+\infty$, there exists A such that $|\hat{g}(\omega)| \leqslant \varepsilon / 2$ when $|\omega|>A$. Moreover, the Fourier integral definition implies that

$$
|\hat{f}(\omega)-\hat{g}(\omega)| \leqslant \int|f(t)-g(t)| d t
$$

so for all $|\omega|>A$ we have $|\hat{f}(\omega)| \leqslant \varepsilon$ which proves that $f(\omega) \rightarrow 0$ when $|\omega| \rightarrow+\infty$.
Exercise 2.9. a) For $f_{0}(t)=1_{[0,+\infty)}(t) e^{p t}$, we get

$$
\hat{f}_{0}(\omega)=\int_{0}^{+\infty} e^{(p-i \omega) t} \mathrm{~d} t=\frac{1}{i \omega-p}
$$

For $f_{n}(t)=t^{n} 1_{[0,+\infty)}(t) e^{p t}$, an integration by parts gives

$$
\hat{f}_{n}(\omega)=\int_{0}^{+\infty} t^{n} e^{(p-i \omega) t} \mathrm{~d} t=\frac{n}{i \omega-p} \hat{f}_{n-1}(\omega)
$$

so that

$$
\hat{f}_{n}(\omega)=\frac{n!}{(i \omega-p)^{n}}
$$

b) Computing the Fourier transform on both sides of the differential equation gives

$$
g=f \star h \quad \text { where } \quad \hat{h}(\omega)=\frac{\sum_{k=0}^{K} a_{k}(i \omega)^{k}}{\sum_{k=0}^{M} b_{k}(i \omega)^{k}} .
$$

We denote by $\left\{p_{k}\right\}_{k=0}^{L}$ the poles of the polynomial $\sum_{k=0}^{M} b_{k} z^{k}$, with multiplicity n_{k}. If $K<M$, one can decompose the rational fraction into

$$
\hat{h}(\omega)=\sum_{k=0}^{L} \frac{Q_{k}(i \omega)}{\left(i \omega-p_{k}\right)^{n_{k}}}
$$

where each Q_{k} is a polynomial of degree strictly smaller than n_{k}. It results that $h(t)$ is a sum of derivatives up to a degree strictly smaller than n_{k} of the inverse Fourier transform of

$$
\hat{f}_{p_{k}, n_{k}}(\omega)=\frac{1}{\left(i \omega-p_{k}\right)^{n_{k}}}
$$

which is

$$
f_{p_{k}, n_{k}}(t)=\frac{1}{n_{k}!} t^{n_{k}} 1_{[0,+\infty)}(t) e^{p_{k} t}
$$

Each filter $f_{p_{k}, n_{k}}$ is causal, stable and n_{k} times differentiable. It results that that h is causal and stable.

If, there exists l with $\operatorname{Re}\left(p_{l}\right)=0$ then for the frequency $\omega=-i p_{l}$ we have $|\hat{h}(\omega)|=+\infty$ so h can not be stable.

If, there exists l with $\operatorname{Re}\left(p_{l}\right)>0$ then by observing that $\hat{f}_{p_{l}, n_{l}}(-\omega)=(-1)^{n_{l}}\left(i \omega+p_{l}\right)^{-n_{l}}$ and by applying the result in a) we get

$$
f_{p_{l}, n_{k_{l}}}(t)=\frac{1}{n_{l}!} t^{n_{l}} 1_{(-\infty, 0]}(t) e^{-p_{l} t}
$$

which is anticausal. We thus derive that h is not causal.
c) Denoting $\alpha=e^{i \pi / 3}$, one can write

$$
|\hat{h}(\omega)|^{2}=\frac{1}{1-\left(i \omega / \omega_{0}\right)^{6}}
$$

with

$$
1 / \hat{h}(\omega)=\left(i \omega / \omega_{0}+1\right)\left(i \omega / \omega_{0}+\alpha\right)\left(i \omega / \omega_{0}+\alpha^{*}\right)=P(i \omega) .
$$

Since the zeros of $P(z)$ have all a strictly negative real part, h is stable and causal. To compute $h(t)$ we decompose

$$
\hat{h}(\omega)=\frac{a_{1}}{i \omega / \omega_{0}+1}+\frac{a_{2}}{i \omega / \omega_{0}+\alpha}+\frac{a_{3}}{i \omega / \omega_{0}+\alpha^{*}},
$$

we compute a_{1}, a_{2} and a_{3} and by applying the result in (a) we derive that

$$
\hat{h}(t)=\omega_{0}\left(a_{1} 1_{[0,+\infty)}(t) e^{-t \omega_{0}}+a_{2} 1_{[0,+\infty)}(t) e^{-t \alpha \omega_{0}}+a_{3} 1_{[0,+\infty)}(t) e^{-t \alpha^{*} \omega_{0}}\right)
$$

Exercise 2.10. For $a>0$ and $u>0$ and g a Gaussian function, define

$$
f_{a, u}(t)=e^{i a t} g(t-u)+e^{-i a t} g(t+u)
$$

We verify that $\sigma_{\omega}\left(f_{a, u}\right)$ increases proportionally to u. Its Fourier transform is

$$
\hat{f}_{a, u}(\omega)=e^{-i u \omega} \hat{g}(\omega-a)+e^{i u \omega} \hat{g}(\omega+a)
$$

so $\sigma_{\omega}\left(f_{a, u}\right)$ increases proportionally to a. For a and u sufficiently large we get the the result.
Exercise 2.11. Since $f(t) \geqslant 0$

$$
|\hat{f}(\omega)|=\left|\int f(t) e^{-i \omega t} d t\right| \leqslant \int f(t) d t=\hat{f}(0)
$$

Exercise 2.12. a) Denoting $u(t)=|\sin (t)|$, one has $g(t)=a(t) u\left(\omega_{0} t\right)$ so that

$$
\hat{g}(\omega)=\frac{1}{2 \pi} \hat{a}(\omega) \star \hat{u}\left(\omega / \omega_{0}\right)
$$

where $\hat{u}(\omega)$ is a distribution

$$
\hat{u}(\omega)=\sum_{n} c_{n} \delta(\omega-n)
$$

and c_{n} is the Fourier coefficient

$$
c_{n}=\int_{-\pi}^{\pi}|\sin (t)| e^{-i n t} \mathrm{~d} t=-\int_{-\pi}^{0} \sin (t) e^{-i n t} \mathrm{~d} t+\int_{0}^{\pi} \sin (t) e^{-i n t} \mathrm{~d} t .
$$

The change of variable $t \rightarrow t+\pi$ in the first integral shows that $c_{2 k+1}=0$ and for $n=2 k$,

$$
c_{2 k}=2 \int_{0}^{\pi} \sin (t) e^{-i 2 k t} \mathrm{~d} t=\frac{4}{1-4 k^{2}}
$$

One thus has

$$
\hat{u}(\omega)=\frac{1}{2 \pi} \sum_{n} c_{n} \hat{a}\left(\omega-n \omega_{0}\right)=\frac{2}{\pi} \sum_{k} \frac{\hat{a}\left(\omega-2 k \omega_{0}\right)}{1-4 k^{2}} .
$$

b) If $\hat{a}(\omega)=0$ for $|\omega|>\omega_{0}$, then h defined by $\hat{h}(\omega)=\frac{\pi}{2} 1_{\left[-\omega_{0}, \omega_{0}\right]}$ guarantees that $\hat{g} \hat{h}=\hat{a}$ and hence $a=g \star h$.
Exercise 2.13. One has

$$
\hat{g}(\omega)=\frac{1}{2} \sum_{n} \hat{f}_{n}(\omega) \star\left[\delta\left(\omega-2 n \omega_{0}\right)+\delta\left(\omega+2 n \omega_{0}\right)\right]=\frac{1}{2} \sum_{n}\left[\hat{f}_{n}\left(\omega-2 n \omega_{0}\right)+\hat{f}_{n}\left(\omega+2 n \omega_{0}\right)\right] .
$$

Each $\hat{f}_{n}\left(\omega \pm 2 n \omega_{0}\right)$ is supported in $\left[(-1 \pm 2 n) \omega_{0},(1 \pm 2 n) \omega_{0}\right]$, and thus \hat{g} is supported in $\left[-2 N \omega_{0}, 2 N \omega_{0}\right]$.

Since the intervals $\left[(-1 \pm 2 n) \omega_{0},(1 \pm 2 n) \omega_{0}\right.$] are disjoint, one has

$$
\hat{f}_{n}\left(\omega \pm 2 n \omega_{0}\right)=2 \hat{g}(\omega) 1_{\left[(-1 \pm 2 n) \omega_{0},(1 \pm 2 n) \omega_{0}\right]}(\omega)
$$

The change of variable $\omega \pm 2 n \omega_{0} \rightarrow \omega$ and summing for n and $-n$ gives

$$
\hat{f}_{n}(\omega)=\left[\hat{g}\left(\omega-2 n \omega_{0}\right)+\hat{g}\left(\omega+2 n \omega_{0}\right)\right] \hat{h}(\omega),
$$

where $\hat{h}(\omega)=1_{\left[-\omega_{0}, \omega_{0}\right]}(\omega)$. Denoting $g_{n}(t)=2 g(t) \cos \left(2 n \omega_{0} t\right)$, one sees that f_{n} is recovered as

$$
f_{n}=g_{n} \star h .
$$

Exercise 2.14. The function $\phi(t)=\sin (\pi t) /(\pi t)$ is monotone on $[-3 / 2,0]$ and $[0,3 / 2]$ on which is variation is $1+\frac{2}{3 \pi}$. For each $k \in \mathbb{N}^{*}$, it is also monotone on each interval $[k+1 / 2, k+3 / 2]$ on which the variation is $\frac{1}{\pi}\left[(k+1 / 2)^{-1}+(k+3 / 2)^{-1}\right]$. One thus has

$$
\|\phi\|_{V}=2\left(1+\frac{2}{3 \pi}\right)+\frac{2}{\pi} \sum_{k \geqslant 1}\left[(k+1 / 2)^{-1}+(k+3 / 2)^{-1}\right]=+\infty .
$$

For $\phi=\lambda 1_{[a, b]},\left|\phi^{\prime}\right|=\lambda \delta_{a}+\lambda \delta_{b}$ and hence $\|\phi\|_{V}=2 \lambda$.
Exercise 2.16. Let

$$
f(x)=1_{[0,1]^{2}}\left(x_{1}, x_{2}\right)=f_{0}\left(x_{1}\right) f_{0}\left(x_{2}\right) \quad \text { where } \quad f_{0}\left(x_{1}\right)=1_{[0,1]}\left(x_{1}\right) .
$$

One has

$$
\hat{f}\left(\omega_{1}, \omega_{2}\right)=\hat{f}_{0}\left(\omega_{1}\right) \hat{f}_{0}\left(\omega_{2}\right)=\frac{\left(e^{i \omega_{1}}-1\right)\left(e^{i \omega_{2}}-1\right)}{\omega_{1} \omega_{2}}
$$

Let

$$
f(x)=e^{-x_{1}^{2}-x_{2}^{2}}=f_{0}\left(x_{1}\right) f_{0}\left(x_{2}\right) \quad \text { where } \quad f_{0}\left(x_{1}\right)=e^{-x_{1}^{2}}
$$

One has

$$
\hat{f}\left(\omega_{1}, \omega_{2}\right)=\hat{f}_{0}\left(\omega_{1}\right) \hat{f}_{0}\left(\omega_{2}\right)=\pi e^{-\left(\omega_{1}^{2}+\omega_{2}^{2}\right) / 4}
$$

Exercise 2.17. If $|t|>1$, the ray $\Delta_{t, \theta}$ does not intersect the unit disc, and thus $p_{\theta}(t)=0$. For $|t|<1$, the Radon transform is computed as the length of a cross section of a disc

$$
p_{\theta}(t)=2 \sqrt{1-t^{2}}
$$

Exercise 2.18. We prove that the Gibbs oscillation amplitude is independent of the angle θ and is equal to a one-dimensional Gibbs oscillation. Let us decompose $f(x)$ into a continuous part $f_{0}(x)$ and a discontinuity of constant amplitude A :

$$
f(x)=f_{0}(x)+A u\left(\cos (\theta) x_{1}+\sin (\theta) x_{2}\right)
$$

where $u(t)=1_{[0,+\infty)}(t)$ is the one-dimensional Heaviside function. The filter satisfies $h_{\xi}\left(x_{1}, x_{2}\right)=$ $g_{\xi}\left(x_{1}\right) g_{\xi}\left(x_{2}\right)$ with $g_{\xi}(t)=\sin (\xi t) /(\pi t)$. The Gibbs phenomena is produced by the discontinuity corresponding to the Heaviside function so we can consider that $f_{0}=0$. Let us suppose that $|\theta| \leqslant \pi / 4$, with no loss of generality. We first prove that

$$
\begin{equation*}
f \star h_{\xi}(x)=f \star g_{\xi}(x) \tag{1}
\end{equation*}
$$

where $\hat{g}_{\xi}\left(\omega_{1}, \omega_{2}\right)=1_{[-\xi, \xi]}\left(\omega_{2}\right)$. Indeed $f(x)$ is constant along any line of angle θ, one can thus verify that its Fourier transform has a support located on the line in the Fourier plane, of angle $\theta+\pi / 2$ which goes through 0 . It results that $\hat{f}(\omega) \hat{h}_{\xi}(\omega)=\hat{f}(\omega) \hat{g}_{\xi}(\omega)$ because the filtering limits the support of \hat{f} to $\left|\omega_{2}\right| \leqslant \xi$. But $g_{\xi}\left(x_{1}, x_{2}\right)=\delta\left(x_{1}\right) \sin \left(\xi x_{2}\right) /\left(\pi x_{2}\right)$. The convolution (1) is thus a one-dimensional convolution along the x_{2} variable, which is computed in the Gibbs Theorem 2.8. The resulting one-dimensional Gibbs oscillations are of the order of $A \times 0.045$.

